cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A361794 Sum of the cubes d^3 of the divisors d satisfying d^2|n.

Original entry on oeis.org

1, 1, 1, 9, 1, 1, 1, 9, 28, 1, 1, 9, 1, 1, 1, 73, 1, 28, 1, 9, 1, 1, 1, 9, 126, 1, 28, 9, 1, 1, 1, 73, 1, 1, 1, 252, 1, 1, 1, 9, 1, 1, 1, 9, 28, 1, 1, 73, 344, 126, 1, 9, 1, 28, 1, 9, 1, 1, 1, 9, 1, 1, 28, 585, 1, 1, 1, 9, 1, 1, 1, 252, 1, 1, 126, 9, 1, 1, 1, 73
Offset: 1

Views

Author

R. J. Mathar, Mar 24 2023

Keywords

Comments

The Mobius transform is 1, 0, 0, 8, 0, 0, 0, 0, 27, 0, 0, ... = n^(3/2)*A010052(n).

Crossrefs

Programs

  • Maple
    gsigma := proc(n,z,k)
        local a,d ;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if modp(n,d^k) = 0 then
                a := a+d^z ;
            end if ;
        end do:
        a ;
    end proc:
    seq( gsigma(n,3,2),n=1..80) ;
  • Mathematica
    f[p_, e_] := (p^(3*(Floor[e/2] + 1)) - 1)/(p^3 - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Mar 24 2023 *)
  • PARI
    a(n) = sumdiv(n, d, if (issquare(d), sqrtint(d)^3)); \\ Michel Marcus, Mar 24 2023
    
  • Python
    from math import prod
    from sympy import factorint
    def A361794(n): return prod((p**(3*(e>>1)+3)-1)//(p**3-1) for p, e in factorint(n).items()) # Chai Wah Wu, Mar 24 2023

Formula

a(n) = Sum_{d^2|n} d^3.
Multiplicative with a(p^e) = (p^(3*(floor(e/2) + 1)) - 1)/(p^3 - 1). - Amiram Eldar, Mar 24 2023
G.f.: Sum_{k>=1} k^3 * x^(k^2) / (1 - x^(k^2)). - Ilya Gutkovskiy, Jun 05 2024
Previous Showing 11-11 of 11 results.