cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-25 of 25 results.

A353842 Last part of the trajectory of the partition run-sum transformation of n, using Heinz numbers.

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 7, 13, 14, 15, 7, 17, 14, 19, 15, 21, 22, 23, 15, 13, 26, 13, 21, 29, 30, 31, 11, 33, 34, 35, 21, 37, 38, 39, 13, 41, 42, 43, 33, 35, 46, 47, 21, 19, 26, 51, 39, 53, 26, 55, 35, 57, 58, 59, 35, 61, 62, 19, 13, 65, 66, 67, 51
Offset: 1

Views

Author

Gus Wiseman, May 25 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The run-sum trajectory is obtained by repeatedly taking the run-sum transformation (A353832) until a squarefree number is reached. For example, the trajectory 12 -> 9 -> 7 corresponds to the partitions (2,1,1) -> (2,2) -> (4).

Examples

			The partition run-sum trajectory of 87780 is: 87780 -> 65835 -> 51205 -> 19855 -> 2915, so a(87780) = 2915.
		

Crossrefs

The fixed points and image are A005117.
For run-lengths instead of sums we have A304464/A304465, counted by A325268.
These are the row-ends of A353840.
Other sequences pertaining to partition trajectory are A353841-A353846.
The version for compositions is A353855, run-ends of A353853.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A182850 and A323014 give frequency depth.
A300273 ranks collapsible partitions, counted by A275870.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, counted by A304442.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    Table[NestWhile[Times@@Prime/@Cases[If[#==1,{},FactorInteger[#]],{p_,k_}:>PrimePi[p]*k]&,n,!SquareFreeQ[#]&],{n,100}]

A353844 Starting with the multiset of prime indices of n, repeatedly take the multiset of run-sums until you reach a squarefree number. This number is prime (or 1) iff n belongs to the sequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 40, 41, 43, 47, 49, 53, 59, 61, 63, 64, 67, 71, 73, 79, 81, 83, 84, 89, 97, 101, 103, 107, 109, 112, 113, 121, 125, 127, 128, 131, 137, 139, 144, 149, 151, 157, 163, 167, 169, 173, 179
Offset: 1

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

The run-sums transformation is described by Kimberling at A237685 and A237750.
The runs of a sequence are its maximal consecutive constant subsequences. For example, the runs of {1,1,1,2,2,3,4} are {1,1,1}, {2,2}, {3}, {4}, with sums {3,3,4,4}.
Note that the Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so this sequence lists Heinz numbers of partitions whose run-sum trajectory reaches an empty set or singleton.

Examples

			The terms together with their prime indices begin:
      1: {}            25: {3,3}           64: {1,1,1,1,1,1}
      2: {1}           27: {2,2,2}         67: {19}
      3: {2}           29: {10}            71: {20}
      4: {1,1}         31: {11}            73: {21}
      5: {3}           32: {1,1,1,1,1}     79: {22}
      7: {4}           37: {12}            81: {2,2,2,2}
      8: {1,1,1}       40: {1,1,1,3}       83: {23}
      9: {2,2}         41: {13}            84: {1,1,2,4}
     11: {5}           43: {14}            89: {24}
     12: {1,1,2}       47: {15}            97: {25}
     13: {6}           49: {4,4}          101: {26}
     16: {1,1,1,1}     53: {16}           103: {27}
     17: {7}           59: {17}           107: {28}
     19: {8}           61: {18}           109: {29}
     23: {9}           63: {2,2,4}        112: {1,1,1,1,4}
The trajectory 60 -> 45 -> 35 ends in a nonprime number 35, so 60 is not in the sequence.
The trajectory 84 -> 63 -> 49 -> 19 ends in a prime number 19, so 84 is in the sequence.
		

Crossrefs

This sequence is a subset of A300273, counted by A275870.
The version for compositions is A353857, counted by A353847.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A304442 counts partitions with all equal run-sums.
A353851 counts compositions with all equal run-sums, ranked by A353848.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353833 ranks partitions with all equal run-sums, nonprime A353834.
A353835 counts distinct run-sums of prime indices, weak A353861.
A353838 ranks partitions with all distinct run-sums, counted by A353837.
A353840-A353846 pertain to partition run-sum trajectory.
A353853-A353859 pertain to composition run-sum trajectory.
A353866 ranks rucksack partitions, counted by A353864.

Programs

  • Mathematica
    ope[n_]:=Times@@Prime/@Cases[If[n==1,{},FactorInteger[n]],{p_,k_}:>PrimePi[p]*k];
    Select[Range[100],#==1||PrimeQ[NestWhile[ope,#,!SquareFreeQ[#]&]]&]

A353845 Number of integer partitions of n such that if you repeatedly take the multiset of run-sums (or condensation), you eventually reach an empty set or singleton.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 5, 2, 8, 3, 5, 2, 15, 2, 5, 4, 18, 2, 13, 2, 14, 4, 5, 2, 62, 3, 5, 5, 14, 2, 18, 2, 48, 4, 5, 4, 71, 2, 5, 4, 54, 2, 18, 2, 14, 10, 5, 2, 374, 3, 9, 4, 14, 2, 37, 4, 54, 4, 5, 2, 131
Offset: 0

Views

Author

Gus Wiseman, May 26 2022

Keywords

Comments

Every sequence can be uniquely split into a sequence of non-overlapping runs. For example, the runs of (2,2,1,1,1,3,2,2) are ((2,2),(1,1,1),(3),(2,2)), with sums (4,3,3,4).

Examples

			The a(1) = 1 through a(8) = 8 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (11111)  (33)      (1111111)  (44)
                    (211)            (222)                (422)
                    (1111)           (3111)               (2222)
                                     (111111)             (4211)
                                                          (41111)
                                                          (221111)
                                                          (11111111)
For example, the partition (3,2,2,2,1,1,1) has trajectory: (1,1,1,2,2,2,3) -> (3,3,6) -> (6,6) -> (12), so is counted under a(12).
		

Crossrefs

Dominated by A018818 (partitions into divisors).
The version for compositions is A353858.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A325268 counts partitions by omicron, rank statistic A304465.
A353832 represents the operation of taking run-sums of a partition.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847-A353859 pertain to composition run-sum trajectory.
A353864 counts rucksack partitions, ranked by A353866.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[NestWhile[Sort[Total/@Split[#]]&,#,!UnsameQ@@#&]]<=1&]],{n,0,30}]

A353843 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with partition run-sum trajectory ending in a partition of length k. All zeros removed.

Original entry on oeis.org

1, 1, 2, 2, 1, 4, 1, 2, 5, 5, 5, 1, 2, 12, 1, 8, 11, 3, 3, 19, 8, 5, 27, 9, 1, 2, 34, 19, 1, 15, 26, 34, 2, 2, 49, 45, 5, 5, 68, 48, 14, 4, 58, 98, 15, 1, 18, 76, 105, 31, 1, 2, 88, 159, 46, 2, 13, 98, 191, 79, 4, 2, 114, 261, 105, 8, 14, 148, 282, 164, 19
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2022

Keywords

Comments

The partition run-sum trajectory is obtained by repeatedly taking the run-sums until a strict partition is reached. For example, the trajectory of y = (3,2,1,1,1) is (3,2,1,1,1) -> (3,3,2) -> (6,2), so y is counted under T(8,2).

Examples

			Triangle begins:
   1
   1
   2
   2  1
   4  1
   2  5
   5  5  1
   2 12  1
   8 11  3
   3 19  8
   5 27  9  1
   2 34 19  1
  15 26 34  2
   2 49 45  5
   5 68 48 14
   4 58 98 15  1
For example, row n = 8 counts the following partitions:
  (8)         (53)       (431)
  (44)        (62)       (521)
  (422)       (71)       (3221)
  (2222)      (332)
  (4211)      (611)
  (41111)     (3311)
  (221111)    (5111)
  (11111111)  (22211)
              (32111)
              (311111)
              (2111111)
		

Crossrefs

Row sums are A000041.
Row-lengths are A003056.
The last part of the same trajectory is A353842.
Column k = 1 is A353845, compositions A353858.
The length of the trajectory is A353846.
The version for compositions is A353856.
A275870 counts collapsible partitions, ranked by A300273.
A304442 counts partitions with constant run-sums, ranked by A353833/A353834.
A325268 counts partitions by omicron, rank statistic A304465.
A353837 counts partitions with all distinct run-sums, ranked by A353838.
A353840-A353846 pertain to partition run-sum trajectory.
A353847 represents the run-sums of a composition, partitions A353832.
A353864 counts rucksack partitions, ranked by A353866.
A353865 counts perfect rucksack partitions, ranked by A353867.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[FixedPoint[Sort[Total/@Split[#]]&,#]]==k&]],{n,0,15},{k,0,n}]

A354583 Heinz numbers of non-rucksack partitions: not every prime-power divisor has a different sum of prime indices.

Original entry on oeis.org

12, 24, 36, 40, 48, 60, 63, 72, 80, 84, 96, 108, 112, 120, 126, 132, 144, 156, 160, 168, 180, 189, 192, 200, 204, 216, 224, 228, 240, 252, 264, 276, 280, 288, 300, 312, 315, 320, 324, 325, 336, 348, 351, 352, 360, 372, 378, 384, 396, 400, 408, 420, 432, 440
Offset: 1

Views

Author

Gus Wiseman, Jun 15 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The term rucksack is short for run-knapsack.

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   36: {1,1,2,2}
   40: {1,1,1,3}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   72: {1,1,1,2,2}
   80: {1,1,1,1,3}
   84: {1,1,2,4}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  112: {1,1,1,1,4}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  144: {1,1,1,1,2,2}
  156: {1,1,2,6}
  160: {1,1,1,1,1,3}
  168: {1,1,1,2,4}
For example, {2,2,2,3,3} does not have distinct run-sums because 2+2+2 = 3+3, so 675 is in the sequence.
		

Crossrefs

Knapsack partitions are counted by A108917, ranked by A299702.
Non-knapsack partitions are ranked by A299729.
The non-partial version is A353839, complement A353838 (counted by A353837).
The complement is A353866, counted by A353864.
The complete complement is A353867, counted by A353865.
The complement for compositions is counted by A354580.
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A073093 counts prime-power divisors.
A300273 ranks collapsible partitions, counted by A275870.
A304442 counts partitions with all equal run-sums, ranked by A353833.
A333223 ranks knapsack compositions, counted by A325676.
A353852 ranks compositions with all distinct run-sums, counted by A353850.
A353861 counts distinct partial run-sums of prime indices.
A354584 lists run-sums of prime indices, rows ranked by A353832.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!UnsameQ@@Total/@primeMS/@Select[Divisors[#],PrimePowerQ]&]
Previous Showing 21-25 of 25 results.