A354656
Column 3 of triangle A354650: a(n) = A354650(n,3), for n >= 1.
Original entry on oeis.org
1, 30, 340, 2530, 14595, 70737, 301070, 1157820, 4100785, 13563010, 42321840, 125586440, 356621070, 973989030, 2569116330, 6567458520, 16317741975, 39504992395, 93390535840, 215983566780, 489454806785, 1088433416785, 2378160809610, 5111208572940, 10816601842950
Offset: 1
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=1,30,print1(A354650(n,3),", "))
A354659
A diagonal of triangle A354650: a(n) = A354650(n,n+1), for n >= 0.
Original entry on oeis.org
1, 3, 30, 390, 5928, 98910, 1757688, 32683680, 628884300, 12428334215, 250940544738, 5156722096422, 107538413657010, 2270751678647100, 48464836803383400, 1044050265679857144, 22675350105240015204, 496034970650911331550, 10920742396832034391590
Offset: 0
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,20,print1(A354650(n,n+1),", "))
Original entry on oeis.org
1, 3, 15, 83, 486, 2937, 18109, 113220, 715122, 4552229, 29156985, 187683795, 1213110600, 7868238588, 51184173036, 333809308696, 2181842704602, 14288748463485, 93737673347185, 615889045662345, 4052198020223430, 26694405836621985, 176052003674681925
Offset: 0
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=0,20,print1(A354650(n,2*n),", "))
Original entry on oeis.org
1, 9, 49, 210, 765, 2492, 7434, 20700, 54420, 136360, 327789, 760102, 1707342, 3728025, 7935525, 16507152, 33624045, 67186077, 131891825, 254710260, 484474753, 908538081, 1681364124, 3073166600, 5551851375, 9919925145, 17541289017, 30714092066, 53279031420
Offset: 1
-
{A354650(n,k) = my(A=[1+y]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(y + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );
polcoeff(A[n+1],k,y)}
for(n=1,30,print1(A354650(n,2)/3,", "))
A354647
G.f. A(x) satisfies: -x^2 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 0, 1, 3, 9, 25, 78, 256, 881, 3064, 10831, 38766, 140550, 514625, 1900301, 7067013, 26448613, 99539716, 376489459, 1430330451, 5455742957, 20885223619, 80213926069, 309002022843, 1193616950854, 4622372591972, 17942238661229, 69795082381496, 272046051362013
Offset: 0
G.f.: A(x) = 1 + x^2 + 3*x^3 + 9*x^4 + 25*x^5 + 78*x^6 + 256*x^7 + 881*x^8 + 3064*x^9 + 10831*x^10 + 38766*x^11 + 140550*x^12 + ...
such that A = A(x) satisfies:
(1) -x^2 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -x^2 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -x^2 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -x^2 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^2 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))
A354648
G.f. A(x) satisfies: -x^3 = Sum_{n=-oo..oo} (-1)^n * x^(n*(n+1)/2) * A(x)^(n*(n-1)/2).
Original entry on oeis.org
1, 0, 0, 1, 3, 9, 22, 54, 135, 368, 1060, 3135, 9295, 27472, 81309, 242255, 728429, 2208483, 6736523, 20634196, 63410076, 195467757, 604457802, 1875053982, 5833449236, 18195767301, 56888745654, 178238369769, 559538565187, 1759796017533, 5544359742297
Offset: 0
G.f.: A(x) = 1 + x^3 + 3*x^4 + 9*x^5 + 22*x^6 + 54*x^7 + 135*x^8 + 368*x^9 + 1060*x^10 + 3135*x^11 + 9295*x^12 + 27472*x^13 + ...
such that A = A(x) satisfies:
(1) -x^3 = ... + x^36*A^28 - x^28*A^21 + x^21*A^15 - x^15*A^10 + x^10*A^6 - x^6*A^3 + x^3*A - x + 1 - A + x*A^3 - x^3*A^6 + x^6*A^10 - x^10*A^15 + x^15*A^21 - x^21*A^28 + x^28*A^36 + ...
(2) -x^3 = (1-x) - (1-x^3)*A + x*(1-x^5)*A^3 - x^3*(1-x^7)*A^6 + x^6*(1-x^9)*A^10 - x^10*(1-x^11)*A^15 + x^15*(1-x^13)*A^21 - x^21*(1-x^15)*A^28 + ...
(3) -x^3 = (1-A) - (1-A^3)*x + A*(1-A^5)*x^3 - A^3*(1-A^7)*x^6 + A^6*(1-A^9)*x^10 - A^10*(1-A^11)*x^15 + A^15*(1-A^13)*x^21 - A^21*(1-A^15)*x^28 + ...
(4) -x^3 = (1 - x*A)*(1 - A)*(1-x) * (1 - x^2*A^2)*(1 - x*A^2)*(1 - x^2*A) * (1 - x^3*A^3)*(1 - x^2*A^3)*(1 - x^3*A^2) * (1 - x^4*A^4)*(1 - x^3*A^4)*(1 - x^4*A^3) * (1 - x^5*A^5)*(1 - x^4*A^5)*(1 - x^5*A^4) * ...
-
{a(n) = my(A=[1]); for(i=1,n, A = concat(A,0);
A[#A] = polcoeff(x^3 + sum(m=0,sqrtint(2*#A+9), (-1)^m * x^(m*(m-1)/2) * (1 - x^(2*m+1)) * Ser(A)^(m*(m+1)/2) ),#A-1) );A[n+1]}
for(n=0,30,print1(a(n),", "))