cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A381096 Number of k <= n such that k is neither coprime to n and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 1, 1, 5, 0, 6, 0, 7, 6, 4, 0, 10, 0, 10, 8, 11, 0, 13, 3, 13, 6, 14, 0, 21, 0, 11, 12, 17, 10, 20, 0, 19, 14, 21, 0, 29, 0, 22, 19, 23, 0, 28, 5, 28, 18, 26, 0, 33, 14, 29, 20, 29, 0, 42, 0, 31, 25, 26, 16, 45, 0, 34, 24, 45, 0, 42, 0, 37
Offset: 1

Views

Author

Michael De Vlieger, Feb 14 2025

Keywords

Comments

Number of k <= n in the cototient of n that do not share the same squarefree kernel as n.
Define a number k "neutral" to n to be such that 1 < gcd(k,n) < k, that is, k neither divides n nor is coprime to n. A045763(n) is the number of k < n such that k is neutral to n.
Define quality Q(k) to be true if k is such that 1 < gcd(k,n) and rad(k) != rad(n).
Then for k <= n and n > 1, a(n) = A045763(n), but admitting divisors k | n such that rad(k) != rad(n), and eliminating occasional nondivisors k such that rad(k) = rad(n), i.e., k listed in row n of A359929 for n = A360768(i).

Examples

			a(6) = 3 since {2, 3, 4} are neither coprime to 6 and do not have the squarefree kernel 6.
a(8) = 1 since only 6 is neither coprime to 8 and does not share the squarefree kernel 2 with 8.
a(10) = 5 since {2, 4, 5, 6, 8} are neither coprime to 10 nor have the squarefree kernel 10.
a(12) = 6 since {2, 3, 4, 8, 9, 10} are neither coprime to 12 nor have the squarefree kernel 6.
a(14) = 7 since {2, 4, 6, 7, 8, 10, 12} are neither coprime to 14 nor have the squarefree kernel 14, etc.
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[n - EulerPhi[n] - DivisorSigma[0, n/rad[n]], {n, 2, 120}]

Formula

a(1) = 0, a(p) = a(4) = 0.
a(n) = A045763(n) - A005361(n).
For n > 1, a(n) = n - phi(n) - tau(n/rad(n)) = A000010(n) - A005361(n).
For n > 1, a(n) = n - A000010(n) - A008479(n) + A355432(n).

A359929 Irregular triangle read by rows, where row n lists k < t such that rad(k) = rad(t) but k does not divide t, where t = A360768(n) and rad(k) = A007947(k).

Original entry on oeis.org

12, 18, 24, 18, 36, 20, 40, 12, 24, 36, 48, 48, 54, 45, 50, 60, 18, 36, 54, 72, 28, 56, 40, 80, 24, 48, 72, 96, 98, 90, 84, 75, 54, 96, 108, 63, 60, 90, 120, 50, 100, 12, 24, 36, 48, 72, 96, 108, 144, 126, 120, 150, 147, 18, 36, 54, 72, 108, 144, 162, 56, 112, 132, 80, 160, 48, 96, 144, 162, 192, 98, 196
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Examples

			Table of some of the first rows of the sequence, showing both even and odd b(n) = A360768(n) with both a single and multiple terms in the row:
   n   b(n)  row n of this sequence
  ---------------------------------
   1    18   12;
   2    24   18;
   3    36   24;
   4    48   18, 36;
   5    50   20, 40;
   6    54   12, 24, 36, 48;
  ...
   8    75   45;
  ...
  18   135   75;
  ...
  23   162   12, 24, 36, 48, 72, 96, 108, 144;
  ...
  56   375   45, 135, 225;
  57   378   84, 168, 252, 294, 336;
  58   384   18, 36, 54, 72, 108, 144, 162, 216, 288, 324
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    s = Select[Range[2^7], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    t = Select[s, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@
          {#, FactorInteger[#][[All, 1]]} &];
    Flatten@ Map[Function[{n, k},
        Select[TakeWhile[s, # < n &],
          And[rad[#] == k, ! Divisible[n, #]] &]] @@ {#, rad[#]} &, t]

Formula

Row lengths are in A359382.

A361235 a(n) = number of k < n, such that k does not divide n, omega(k) < omega(n) and rad(k) | rad(n), where omega(n) = A001221(n) and rad(n) = A007947(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 2, 1, 0, 0, 3, 0, 2, 1, 3, 0, 2, 0, 3, 0, 2, 0, 10, 0, 0, 2, 4, 1, 4, 0, 4, 2, 3, 0, 11, 0, 3, 2, 4, 0, 3, 0, 4, 2, 3, 0, 4, 1, 3, 2, 4, 0, 14, 0, 4, 2, 0, 1, 14, 0, 4, 2, 12, 0, 4, 0, 5, 2, 4, 1, 15, 0, 3, 0, 5, 0, 16, 1, 5, 3, 3, 0, 19, 1, 4, 3, 5, 1, 4, 0, 5
Offset: 1

Views

Author

Michael De Vlieger, Mar 06 2023

Keywords

Comments

a(n) = 0 for prime powers, since the definition implies omega(n) >= 2.

Examples

			a(6) = 1 since k = 4 is such that rad(4)|rad(6) = 2|6 and omega(4) < omega(6).
a(10) = 2 since k = 4 is such that rad(4)|rad(10) = 2|10 and omega(4) < omega(10), and k = 8 is such that rad(8)|rad(10) = 2|10 and omega(8) < omega(10).
a(12) = 2 since the following satisfies definition: {8, 9}.
a(14) = 2, i.e., {4, 8}.
a(15) = 1, i.e., {9}.
a(18) = 3, i.e., {8, 9, 16}.
a(30) = 10, i.e., {4, 8, 9, 12, 16, 18, 20, 24, 25, 27}, etc.
		

Crossrefs

Programs

  • Mathematica
    nn = 2^10;
    rad[n_] := rad[n] = Times @@ FactorInteger[n][[All, 1]];
    {0}~Join~Table[
       If[PrimePowerQ[n], 0,
        q = PrimeNu[n]; r = rad[n];
        Count[ DeleteCases[ Range[n],
         _?(Or[Divisible[n, #], CoprimeQ[#, n], ! Divisible[r, rad[#]]] &)],
         _?(PrimeNu[#] < q &)]],
       {n, 2, nn}]

Formula

a(n) = A243822(n) - A355432(n).
a(n) = A045763(n) - A243823(n) - A355432(n).
a(n) = A051953(n) - A000005(n) - A243823(n) - A355432(n) + 1.
a(n) = A010846(n) - A000005(n) - A355432(n).
a(n) = 0 for n in A000961.
a(n) > 0 for n in A013929.
a(n) = A243822(n) for n not in A360768.

A359382 a(n) = number of k < t such that rad(k) = rad(t) and k does not divide t, where t = A360768(n) and rad(k) = A007947(k).

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 2, 1, 1, 1, 4, 2, 2, 4, 1, 1, 1, 1, 3, 1, 3, 2, 8, 1, 2, 1, 7, 2, 1, 2, 5, 2, 1, 1, 3, 3, 1, 6, 1, 1, 5, 5, 4, 5, 1, 1, 4, 8, 3, 3, 1, 2, 1, 4, 2, 3, 5, 10, 2, 1, 3, 3, 1, 1, 1, 6, 1, 3, 7, 1, 1, 7, 3, 14, 3, 6, 3, 2, 1, 1, 2, 7, 2, 1, 1, 2, 2, 8, 4, 6, 4, 8, 1, 1, 2, 1, 6, 9, 2, 1
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Comments

This sequence contains nonzero values in A355432.

Examples

			Table relating a(n) to b(n) = A360768(n) and row n of A359929.
n  b(n)   row n of A359929   a(n)
---------------------------------
1   18    12                   1
2   24    18                   1
3   36    24                   1
4   48    18, 36               2
5   50    20, 40               2
6   54    12, 24, 36, 48       4
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    s = Select[Range[671], Nor[SquareFreeQ[#], PrimePowerQ[#]] &];
    t = Select[s, #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@
          {#, FactorInteger[#][[All, 1]]} &];
    Map[Function[{n, k},
        Count[TakeWhile[s, # < n &],
          _?(And[rad[#] == k, ! Divisible[n, #]] &)]] @@ {#, rad[#]} &, t]

Formula

a(n) = A355432(A360768(n)) = length of row n in A359929.

A361487 Odd numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

75, 135, 147, 189, 225, 245, 363, 375, 405, 441, 507, 525, 567, 605, 675, 735, 825, 845, 847, 867, 875, 891, 945, 975, 1029, 1053, 1083, 1089, 1125, 1183, 1215, 1225, 1275, 1323, 1375, 1377, 1425, 1445, 1485, 1521, 1539, 1575, 1587, 1617, 1625, 1701, 1715, 1725, 1755, 1805, 1815, 1859, 1863, 1875, 1911
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Comments

Odd terms in A360768, which itself is a proper subsequence of A126706.
Odd numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 75, since 75/15 >= 5. We note that rad(45) = rad(75) = 15, yet 45 does not divide 75.
a(2) = 135, since 135/15 >= 5. Note: rad(75) = rad(135) = 15, yet 45 does not divide 135.
a(3) = 147, since 147/21 >= 7. Note: rad(63) = rad(147) = 21, yet 147 mod 63 = 21.
Chart below shows k < a(n) such that rad(k) = rad(n), yet k does not divide n:
      75 | 45   .
     135 |  .   .  75   .   .
     147 |  .  63   .   .   .   .
     189 |  .   .   .   .   .   . 147   .   .   .
a(n) 225 |  .   .   .   .   . 135   .   .   .   .   .   .
     245 |  .   .   .   .   .   .   .   .   . 175   .   .   .
     363 |  .   .   .  99   .   .   .   .   .   .   .   .   .   .   .   .   . 297
     375 | 45   .   .   .   . 135   .   .   .   .   .   . 225   .   .   .   .   .
     ----------------------------------------------------------------------------
         | 45  63  75  99 117 135 147 153 171 175 189 207 225 245 261 275 279 297
                                        k in A360769
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1, 2000, 2], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    is(k) = { if (k%2, my (f = factor(k)); #f~ > 1 && k/vecprod(f[,1]~) >= f[2, 1], 0); } \\ Rémy Sigrist, Mar 29 2023

Formula

This sequence is { odd k in A126706 : k/A007947(k) >= A119288(k) }.
Previous Showing 11-15 of 15 results.