cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381240 Indices of records in A381096.

Original entry on oeis.org

1, 6, 10, 12, 14, 18, 22, 24, 28, 30, 42, 54, 60, 66, 78, 84, 90, 102, 114, 120, 126, 132, 138, 150, 168, 180, 198, 204, 210, 240, 252, 264, 270, 294, 300, 330, 360, 378, 390, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714, 750, 780, 810, 840
Offset: 1

Views

Author

Michael De Vlieger, Feb 18 2025

Keywords

Comments

Let f(k) = A381096(k) = k - phi(k) - tau(k/rad(k)) = k - A000010(k) - A005361(k), where phi = A000010, tau = A000005, and rad = A007947. This sequence contains k such that f(k) > f(j) for j < k as k increases.
Apart from a(1) = 1, terms are in A024619.
Conjecture 1: For i > 1, A002110(i) is in this sequence.
Conjecture 2: Intersection with A001694 (i.e., in A286708) is {900, 1800}.

Examples

			Let g(n) = A067255(n) be the exponents of prime power factors p^m | n, writing "." for m = 0 and ending at the pi(gpf(n))-th term. Example: for n = 84, g(84) = {2, 1, 0, 1}, therefore we write "21.1" for concision in the table below.
Table of first 12 terms.
   n  a(n)  g(a(n)) f(a(n))
  --------------------------
   1    1   .           0
   2    6   11          3
   3   10   1.1         5
   4   12   21          6
   5   14   1..1        7
   6   18   12         10
   7   22   1...1      11
   8   24   31         13
   9   28   2..1       14
  10   30   111        21
  11   42   11.1       29
  12   54   13         33
		

Crossrefs

Programs

  • Mathematica
    r = 0; nn = 2^20; f[x_] := x - EulerPhi[x] - DivisorSigma[0, x/Apply[Times, FactorInteger[x][[All, 1]] ] ]; {1}~Join~Reap[Monitor[Do[If[# > r, r = #; Sow[n]] &[f[n] ], {n, nn}], n]]

A381241 Records in A381096.

Original entry on oeis.org

0, 3, 5, 6, 7, 10, 11, 13, 14, 21, 29, 33, 42, 45, 53, 58, 64, 69, 77, 85, 88, 90, 93, 108, 117, 128, 136, 138, 161, 172, 176, 181, 195, 208, 216, 249, 258, 267, 293, 322, 326, 341, 347, 354, 381, 390, 401, 425, 434, 484, 498, 513, 521, 547, 586, 590, 645, 652
Offset: 1

Views

Author

Michael De Vlieger, Feb 24 2025

Keywords

Crossrefs

Programs

  • Mathematica
    rad[x_] := Times @@ FactorInteger[x][[All, 1]]; nn = Length[s];
    r = 0; nn = 2^10; f[x_] := x - EulerPhi[x] - DivisorSigma[0, x/rad[x]]; {0}~Join~Reap[Do[If[# > r, r = #; Sow[#]] &[f[n]], {n, nn}]][[-1, -1]]

A381094 Triangle read by rows where row n contains k < n that are neither coprime to n nor have the same squarefree kernel as n, or 0 if there are no such k.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 6, 2, 4, 5, 6, 8, 0, 2, 3, 4, 8, 9, 10, 0, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 6, 10, 12, 14, 0, 2, 3, 4, 8, 9, 10, 14, 15, 16, 0, 2, 4, 5, 6, 8, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20
Offset: 1

Views

Author

Michael De Vlieger, Feb 14 2025

Keywords

Comments

Let rad(k) = A007947(k), the squarefree kernel of k.
Let T(n) be row n of this sequence and let S(n) be row n of A133995.
T(n) contains numbers k < n such that k and n share at least one prime factor p, but not all distinct prime p | n.
T(n) is a superset of S(n), since S(n) does not contain any divisor d | n, while T(n) allows d | n such that rad(d) != rad(n).

Examples

			Table begins:
   n   row n
  ---------------------------
   1:  0;
   2:  0;
   3:  0;
   4:  0;
   5:  0;
   6:  2, 3, 4;
   7:  0;
   8:  6;
   9:  6;
  10:  2, 4, 5, 6, 8;
  11:  0;
  12:  2, 3, 4, 8, 9, 10;
  13:  0;
  14:  2, 4, 6, 7, 8, 10, 12;
  15:  3, 5, 6, 9, 10, 12;
  16:  6, 10, 12, 14;
From _Michael De Vlieger_, Mar 03 2025: (Start)
Row 10 is the union of {2, 4, 6, 8, 10} and {5, 10} without 10.
Row 12 is the union of {2, 4, 6, 8, 10, 12} and {3, 6, 9, 12} without {6, 12}.
Row 30 is the union of {2, 4, ..., 30}, {3, 6, ..., 30}, and {5, 10, ..., 30} without 30.
Row 84 is the union of {2, 4, ..., 84}, {3, 6, ..., 84}, and {7, 14, ..., 84} without {42, 84}, etc. (End)
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]

Formula

T(n) = { k < n : 1 < gcd(k,n), rad(k) != rad(n) }.
T(n) = S(n) \ { k : k | n, rad(k) = rad(n) }.
For prime p, T(p) = {}, but we write 0 to signify the empty set.
T(4) = 0, since k < 4 is either coprime to 4 or rad(k) = 2.
Let U(n) be row n of A121998 and let R(n) be row n of A369609. T(n) = U(n) \ R(n). - Michael De Vlieger, Mar 03 2025

A381497 a(n) = sum of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 9, 0, 6, 6, 25, 0, 36, 0, 49, 45, 42, 0, 81, 0, 100, 84, 121, 0, 144, 45, 169, 96, 196, 0, 315, 0, 210, 198, 289, 175, 354, 0, 361, 273, 430, 0, 609, 0, 484, 435, 529, 0, 648, 140, 655, 459, 676, 0, 801, 385, 826, 570, 841, 0, 1260, 0, 961, 798
Offset: 1

Views

Author

Michael De Vlieger, Mar 02 2025

Keywords

Comments

Analogous to A066760(n), the sum of row n of A133995, and A381499(n), sum of row n of A272619.

Examples

			Table of n and a(n) for select n, showing prime power decomposition of both and row n of A381094:
   n   Factor(n) a(n)  Factor(a(n))  Row n of A381094
  -------------------------------------------------------------------
   6   2 * 3       9   3^2           {2,3,4}
   8   2^3         6   2 * 3         {6}
   9   3^2         6   2 * 3         {6}
  10   2 * 5      25   5^2           {2,4,5,6,8}
  12   2^2 * 3    36   2^2 * 3^2     {2,3,4,8,9,10}
  14   2 * 7      49   7^2           {2,4,6,7,8,10,12}
  15   3 * 5      45   3^2 * 5       {3,5,6,9,10,12}
  16   2^4        42   2 * 3 * 7     {6,10,12,14}
  18   2 * 3^2    81   3^4           {2,3,4,8,9,10,14,15,16}
  20   2^2 * 5   100   2^2 * 5^2     {2,4,5,6,8,12,14,15,16,18}
  21   3 * 7      84   2^2 * 3 * 7   {3,6,7,9,12,14,15,18}
  22   2 * 11    121   11^2          {2,4,6,8,10,11,12,14,16,18,20}
  24   2^3 * 3   144   2^4 * 3^2     {2,3,4,8,9,10,14,15,16,20,21,22}
a(6) = (2+4) + (3) = 9,
a(n) = 6 for n in {8, 9} since 6 is the only number less than n that shares a factor with n but does not have the same squarefree kernel as n.
a(10) = (2+4+6+8) + (5) = 25.
a(12) = (2+4+8+10) + (3+9) = 36.
a(14) = (2+4+6+8+10+12) + (7) = 49.
a(15) = (3+6+9+12) + (5+10) = 45.
a(16) = (6+10+12+14) = 42, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]

Formula

a(n) is the sum of row n of A381094.
a(n) = 0 for prime n and n = 4.
a(n) = A067392(n) - A381498(n).
Showing 1-4 of 4 results.