Original entry on oeis.org
1, 6, 10, 12, 14, 18, 22, 24, 28, 30, 42, 54, 60, 66, 78, 84, 90, 102, 114, 120, 126, 132, 138, 150, 168, 180, 198, 204, 210, 240, 252, 264, 270, 294, 300, 330, 360, 378, 390, 420, 450, 462, 480, 504, 510, 540, 546, 570, 600, 630, 660, 690, 714, 750, 780, 810, 840
Offset: 1
Let g(n) = A067255(n) be the exponents of prime power factors p^m | n, writing "." for m = 0 and ending at the pi(gpf(n))-th term. Example: for n = 84, g(84) = {2, 1, 0, 1}, therefore we write "21.1" for concision in the table below.
Table of first 12 terms.
n a(n) g(a(n)) f(a(n))
--------------------------
1 1 . 0
2 6 11 3
3 10 1.1 5
4 12 21 6
5 14 1..1 7
6 18 12 10
7 22 1...1 11
8 24 31 13
9 28 2..1 14
10 30 111 21
11 42 11.1 29
12 54 13 33
- Michael De Vlieger, Table of n, a(n) for n = 1..1782 (a(n) < 2^28).
- Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n,pi(p)), n = 1..1781, 4X vertical exaggeration for clarity, with a color function representing m = 1 in black, m = 2 in red, m = 3 in orange, ..., largest m in the dataset in magenta.
-
r = 0; nn = 2^20; f[x_] := x - EulerPhi[x] - DivisorSigma[0, x/Apply[Times, FactorInteger[x][[All, 1]] ] ]; {1}~Join~Reap[Monitor[Do[If[# > r, r = #; Sow[n]] &[f[n] ], {n, nn}], n]]
Original entry on oeis.org
0, 3, 5, 6, 7, 10, 11, 13, 14, 21, 29, 33, 42, 45, 53, 58, 64, 69, 77, 85, 88, 90, 93, 108, 117, 128, 136, 138, 161, 172, 176, 181, 195, 208, 216, 249, 258, 267, 293, 322, 326, 341, 347, 354, 381, 390, 401, 425, 434, 484, 498, 513, 521, 547, 586, 590, 645, 652
Offset: 1
-
rad[x_] := Times @@ FactorInteger[x][[All, 1]]; nn = Length[s];
r = 0; nn = 2^10; f[x_] := x - EulerPhi[x] - DivisorSigma[0, x/rad[x]]; {0}~Join~Reap[Do[If[# > r, r = #; Sow[#]] &[f[n]], {n, nn}]][[-1, -1]]
A381094
Triangle read by rows where row n contains k < n that are neither coprime to n nor have the same squarefree kernel as n, or 0 if there are no such k.
Original entry on oeis.org
0, 0, 0, 0, 0, 2, 3, 4, 0, 6, 6, 2, 4, 5, 6, 8, 0, 2, 3, 4, 8, 9, 10, 0, 2, 4, 6, 7, 8, 10, 12, 3, 5, 6, 9, 10, 12, 6, 10, 12, 14, 0, 2, 3, 4, 8, 9, 10, 14, 15, 16, 0, 2, 4, 5, 6, 8, 12, 14, 15, 16, 18, 3, 6, 7, 9, 12, 14, 15, 18, 2, 4, 6, 8, 10, 11, 12, 14, 16, 18, 20
Offset: 1
Table begins:
n row n
---------------------------
1: 0;
2: 0;
3: 0;
4: 0;
5: 0;
6: 2, 3, 4;
7: 0;
8: 6;
9: 6;
10: 2, 4, 5, 6, 8;
11: 0;
12: 2, 3, 4, 8, 9, 10;
13: 0;
14: 2, 4, 6, 7, 8, 10, 12;
15: 3, 5, 6, 9, 10, 12;
16: 6, 10, 12, 14;
From _Michael De Vlieger_, Mar 03 2025: (Start)
Row 10 is the union of {2, 4, 6, 8, 10} and {5, 10} without 10.
Row 12 is the union of {2, 4, 6, 8, 10, 12} and {3, 6, 9, 12} without {6, 12}.
Row 30 is the union of {2, 4, ..., 30}, {3, 6, ..., 30}, and {5, 10, ..., 30} without 30.
Row 84 is the union of {2, 4, ..., 84}, {3, 6, ..., 84}, and {7, 14, ..., 84} without {42, 84}, etc. (End)
-
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]
A381497
a(n) = sum of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n), where rad = A007947.
Original entry on oeis.org
0, 0, 0, 0, 0, 9, 0, 6, 6, 25, 0, 36, 0, 49, 45, 42, 0, 81, 0, 100, 84, 121, 0, 144, 45, 169, 96, 196, 0, 315, 0, 210, 198, 289, 175, 354, 0, 361, 273, 430, 0, 609, 0, 484, 435, 529, 0, 648, 140, 655, 459, 676, 0, 801, 385, 826, 570, 841, 0, 1260, 0, 961, 798
Offset: 1
Table of n and a(n) for select n, showing prime power decomposition of both and row n of A381094:
n Factor(n) a(n) Factor(a(n)) Row n of A381094
-------------------------------------------------------------------
6 2 * 3 9 3^2 {2,3,4}
8 2^3 6 2 * 3 {6}
9 3^2 6 2 * 3 {6}
10 2 * 5 25 5^2 {2,4,5,6,8}
12 2^2 * 3 36 2^2 * 3^2 {2,3,4,8,9,10}
14 2 * 7 49 7^2 {2,4,6,7,8,10,12}
15 3 * 5 45 3^2 * 5 {3,5,6,9,10,12}
16 2^4 42 2 * 3 * 7 {6,10,12,14}
18 2 * 3^2 81 3^4 {2,3,4,8,9,10,14,15,16}
20 2^2 * 5 100 2^2 * 5^2 {2,4,5,6,8,12,14,15,16,18}
21 3 * 7 84 2^2 * 3 * 7 {3,6,7,9,12,14,15,18}
22 2 * 11 121 11^2 {2,4,6,8,10,11,12,14,16,18,20}
24 2^3 * 3 144 2^4 * 3^2 {2,3,4,8,9,10,14,15,16,20,21,22}
a(6) = (2+4) + (3) = 9,
a(n) = 6 for n in {8, 9} since 6 is the only number less than n that shares a factor with n but does not have the same squarefree kernel as n.
a(10) = (2+4+6+8) + (5) = 25.
a(12) = (2+4+8+10) + (3+9) = 36.
a(14) = (2+4+6+8+10+12) + (7) = 49.
a(15) = (3+6+9+12) + (5+10) = 45.
a(16) = (6+10+12+14) = 42, etc.
-
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]
Showing 1-4 of 4 results.
Comments