cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A381096 Number of k <= n such that k is neither coprime to n and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 1, 1, 5, 0, 6, 0, 7, 6, 4, 0, 10, 0, 10, 8, 11, 0, 13, 3, 13, 6, 14, 0, 21, 0, 11, 12, 17, 10, 20, 0, 19, 14, 21, 0, 29, 0, 22, 19, 23, 0, 28, 5, 28, 18, 26, 0, 33, 14, 29, 20, 29, 0, 42, 0, 31, 25, 26, 16, 45, 0, 34, 24, 45, 0, 42, 0, 37
Offset: 1

Views

Author

Michael De Vlieger, Feb 14 2025

Keywords

Comments

Number of k <= n in the cototient of n that do not share the same squarefree kernel as n.
Define a number k "neutral" to n to be such that 1 < gcd(k,n) < k, that is, k neither divides n nor is coprime to n. A045763(n) is the number of k < n such that k is neutral to n.
Define quality Q(k) to be true if k is such that 1 < gcd(k,n) and rad(k) != rad(n).
Then for k <= n and n > 1, a(n) = A045763(n), but admitting divisors k | n such that rad(k) != rad(n), and eliminating occasional nondivisors k such that rad(k) = rad(n), i.e., k listed in row n of A359929 for n = A360768(i).

Examples

			a(6) = 3 since {2, 3, 4} are neither coprime to 6 and do not have the squarefree kernel 6.
a(8) = 1 since only 6 is neither coprime to 8 and does not share the squarefree kernel 2 with 8.
a(10) = 5 since {2, 4, 5, 6, 8} are neither coprime to 10 nor have the squarefree kernel 10.
a(12) = 6 since {2, 3, 4, 8, 9, 10} are neither coprime to 12 nor have the squarefree kernel 6.
a(14) = 7 since {2, 4, 6, 7, 8, 10, 12} are neither coprime to 14 nor have the squarefree kernel 14, etc.
		

Crossrefs

Programs

  • Mathematica
    {0}~Join~Table[n - EulerPhi[n] - DivisorSigma[0, n/rad[n]], {n, 2, 120}]

Formula

a(1) = 0, a(p) = a(4) = 0.
a(n) = A045763(n) - A005361(n).
For n > 1, a(n) = n - phi(n) - tau(n/rad(n)) = A000010(n) - A005361(n).
For n > 1, a(n) = n - A000010(n) - A008479(n) + A355432(n).

A381497 a(n) = sum of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n), where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 9, 0, 6, 6, 25, 0, 36, 0, 49, 45, 42, 0, 81, 0, 100, 84, 121, 0, 144, 45, 169, 96, 196, 0, 315, 0, 210, 198, 289, 175, 354, 0, 361, 273, 430, 0, 609, 0, 484, 435, 529, 0, 648, 140, 655, 459, 676, 0, 801, 385, 826, 570, 841, 0, 1260, 0, 961, 798
Offset: 1

Views

Author

Michael De Vlieger, Mar 02 2025

Keywords

Comments

Analogous to A066760(n), the sum of row n of A133995, and A381499(n), sum of row n of A272619.

Examples

			Table of n and a(n) for select n, showing prime power decomposition of both and row n of A381094:
   n   Factor(n) a(n)  Factor(a(n))  Row n of A381094
  -------------------------------------------------------------------
   6   2 * 3       9   3^2           {2,3,4}
   8   2^3         6   2 * 3         {6}
   9   3^2         6   2 * 3         {6}
  10   2 * 5      25   5^2           {2,4,5,6,8}
  12   2^2 * 3    36   2^2 * 3^2     {2,3,4,8,9,10}
  14   2 * 7      49   7^2           {2,4,6,7,8,10,12}
  15   3 * 5      45   3^2 * 5       {3,5,6,9,10,12}
  16   2^4        42   2 * 3 * 7     {6,10,12,14}
  18   2 * 3^2    81   3^4           {2,3,4,8,9,10,14,15,16}
  20   2^2 * 5   100   2^2 * 5^2     {2,4,5,6,8,12,14,15,16,18}
  21   3 * 7      84   2^2 * 3 * 7   {3,6,7,9,12,14,15,18}
  22   2 * 11    121   11^2          {2,4,6,8,10,11,12,14,16,18,20}
  24   2^3 * 3   144   2^4 * 3^2     {2,3,4,8,9,10,14,15,16,20,21,22}
a(6) = (2+4) + (3) = 9,
a(n) = 6 for n in {8, 9} since 6 is the only number less than n that shares a factor with n but does not have the same squarefree kernel as n.
a(10) = (2+4+6+8) + (5) = 25.
a(12) = (2+4+8+10) + (3+9) = 36.
a(14) = (2+4+6+8+10+12) + (7) = 49.
a(15) = (3+6+9+12) + (5+10) = 45.
a(16) = (6+10+12+14) = 42, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]

Formula

a(n) is the sum of row n of A381094.
a(n) = 0 for prime n and n = 4.
a(n) = A067392(n) - A381498(n).

A381499 a(n) = sum of numbers k < n such that 1 < gcd(k,n) < k and rad(k) does not divide n, where rad = A007947.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 0, 10, 0, 28, 28, 42, 0, 39, 0, 65, 65, 80, 0, 102, 45, 126, 96, 159, 0, 111, 0, 210, 148, 210, 138, 253, 0, 280, 221, 338, 0, 342, 0, 411, 366, 444, 0, 547, 140, 563, 403, 601, 0, 700, 344, 708, 512, 750, 0, 751, 0, 868, 703, 930
Offset: 1

Views

Author

Michael De Vlieger, Mar 02 2025

Keywords

Comments

Analogous to A066760(n), the sum of row n of A133995, and A381497(n), sum of row n of A381094.

Examples

			Table of n and a(n) for select n, showing prime power decomposition of the latter and row n of A272619:
 n   a(n)  Factor(a(n))  Row n of A272619
-----------------------------------------------------
 8     6   2 * 3         {6}
 9     6   2 * 3         {6}
10     6   2 * 3         {6}
12    10   2 * 5         {10}
14    28   2^2 * 7       {6,10,12}
15    28   2^2 * 7       {6,10,12}
16    42   2 * 3 * 7     {6,10,12,14}
18    39   3 * 13        {10,14,15}
20    65   5 * 13        {6,12,14,15,18}
21    65   5 * 13        {6,12,14,15,18}
22    80   2^4 * 5       {6,10,12,14,18,20}
24   102   2 * 3 * 17    {10,14,15,20,21,22}
25    45   3^2 * 5       {10,15,20}
26   126   2 * 3^2 * 7   {6,10,12,14,18,20,22,24}
27    96   2^5 * 3       {6,12,15,18,21,24}
28   159   3 * 53        {6,10,12,18,20,21,22,24,26}
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; If[PrimeQ[n], 0, Total@ Select[Range[n], And[1 < GCD[#, n] < #, ! Divisible[n, rad[#]]] &]], {n, 120}]

Formula

a(n) is the sum of row n of A272619.
a(n) = 0 for prime n, n = 4, and n = 6.

A381674 a(n) = product of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 24, 1, 6, 6, 1920, 1, 17280, 1, 322560, 97200, 10080, 1, 58060800, 1, 1393459200, 51438240, 40874803200, 1, 536481792000, 3000, 25505877196800, 9797760, 535623421132800, 1, 40999294770610176000000, 1, 41845579776000, 51855036710400, 23310331287699456000
Offset: 1

Views

Author

Michael De Vlieger, Mar 15 2025

Keywords

Comments

Terms are in A055932.
The only squarefree terms are 1 and 6.

Examples

			Table of n and a(n) for select n, showing exponents of prime factors of the latter and row n of A381094:
                                             1  1  1
   n                       a(n)  2  3  5  7  1  3  7   Row n of A381094
  ---------------------------------------------------------------------------------------
   6                        24   3, 1                  {2,3,4}
   8                         6   1, 1                  {6}
   9                         6   1, 1                  {6}
  10                      1920   7, 1, 1               {2,4,5,6,8}
  12                     17280   7, 3, 1               {2,3,4,8,9,10}
  14                    322560  10, 2, 1, 1            {2,4,6,7,8,10,12}
  15                     97200   4, 5, 2               {3,5,6,9,10,12}
  16                     10080   5, 2, 1, 1            {6,10,12,14}
  18                  58060800  12, 4, 2, 1            {2,3,4,8,9,10,14,15,16}
  20                1393459200  15, 5, 2, 1            {2,4,5,6,8,12,14,15,16,18}
  24              536481792000  15, 5, 3, 2, 1         {2,3,4,8,9,10,14,15,16,20,21,22}
  25                      3000   3, 1, 3               {10,15,20}
  30   40999294770610176000000  25,13, 6, 3, 1, 1      {2,3,4,5,6,8,9,10,12,14,..,28}
  32            41845579776000  16, 6, 3, 2, 1, 1      {6,10,12,14,18,20,22,24,26,28,30}
  36   11358323143857930240000  25,10, 4, 3, 2, 1, 1   {2,3,4,8,9,10,14,15,16,20,..,34}
a(n) = 6 for n = 8 or 9, since 6 is the only number less than n that shares a factor with n but rad(6) != rad(n).
a(6) = (2*3)*(4) = 24.
a(10) = (2*4*6*8)*(5) = 1920.
a(12) = (2*4*8*10)*(3*9) = 17280, etc.
		

Crossrefs

Programs

  • Mathematica
    rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]];
    Table[r = rad[n]; Times @@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]

Formula

a(n) is the product of row n of A381094.
a(n) = 1 for prime n and n = 4.
a(2*p) = p * 2^(p-1) * (p-1)! = A381675(n) for odd prime p = prime(n), n > 1.
Showing 1-4 of 4 results.