cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A382524 Number of ways to choose a different constant partition of each part of a constant partition of n.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 6, 2, 10, 3, 6, 2, 24, 2, 6, 4, 17, 2, 36, 2, 18, 4, 6, 2, 86, 3, 6, 10, 18, 2, 44, 2, 50, 4, 6, 4, 159, 2, 6, 4, 62, 2, 44, 2, 18, 30, 6, 2, 486, 3, 12, 4, 18, 2, 140, 4, 62, 4, 6, 2, 932, 2, 6, 30, 157, 4, 44, 2, 18, 4, 20, 2, 1500, 2, 6
Offset: 0

Views

Author

Gus Wiseman, Apr 03 2025

Keywords

Comments

These are strict twice-partitions of weight n and type PRR.

Examples

			The a(1) = 1 through a(8) = 10 twice-partitions:
  (1)  (2)   (3)    (4)      (5)      (6)       (7)        (8)
       (11)  (111)  (22)     (11111)  (33)      (1111111)  (44)
                    (1111)            (222)                (2222)
                    (11)(2)           (111111)             (22)(4)
                    (2)(11)           (111)(3)             (4)(22)
                                      (3)(111)             (1111)(4)
                                                           (4)(1111)
                                                           (11111111)
                                                           (1111)(22)
                                                           (22)(1111)
		

Crossrefs

For distinct instead of equal block-sums we have A279786.
This is the strict case of A279789.
The orderless version is A304442, see A353833, A381995, A381871.
Multiset partitions of this type are ranked by A326534 /\ A355743 /\ A005117.
Partitions with no partition of this type are counted by A382076, strict case of A381993.
Normal multiset partitions of this type are counted by the strict case of A382204.
A006171 counts multiset partitions into constant blocks of integer partitions of n.
A050361 counts factorizations into distinct prime powers, see A381715.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    Table[If[n==0,1,Sum[Binomial[Length[Divisors[n/d]],d]*d!,{d,Divisors[n]}]],{n,0,100}]

Formula

a(n) = Sum_{d|n} binomial(A000005(n/d),d) * d!

A383309 Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 35, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The systems with these MM-numbers begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  35: {{2},{1,1}}
  41: {{6}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  59: {{7}}
  67: {{8}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  97: {{3,3}}
		

Crossrefs

Twice-partitions of this type are counted by A279789.
For just a common sum we have A326534.
For just constant blocks we have A355743.
Numbers without a factorization of this type are listed by A381871, counted by A381993.
The multiplicative version is A381995.
This is the odd case of A382215.
For strict instead of constant blocks we have A382304.
A001055 counts factorizations, strict A045778.
A023894 counts partitions into prime-powers.
A034699 gives maximal prime-power divisor.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@PrimePowerQ/@prix[#]&]

Formula

Equals A326534 /\ A355743.

A356067 Number of integer partitions of n into relatively prime prime-powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 3, 2, 5, 4, 11, 7, 18, 16, 26, 27, 43, 41, 65, 65, 92, 100, 137, 142, 194, 210, 270, 295, 379, 410, 519, 571, 699, 782, 947, 1046, 1267, 1414, 1673, 1870, 2213, 2465, 2897, 3230, 3757, 4210, 4871, 5427, 6265, 6997
Offset: 0

Views

Author

Gus Wiseman, Jul 28 2022

Keywords

Examples

			The a(5) = 1 through a(12) = 7 partitions:
  (32)  .  (43)   (53)   (54)    (73)    (74)     (75)
           (52)   (332)  (72)    (433)   (83)     (543)
           (322)         (432)   (532)   (92)     (552)
                         (522)   (3322)  (443)    (732)
                         (3222)          (533)    (4332)
                                         (542)    (5322)
                                         (722)    (33222)
                                         (3332)
                                         (4322)
                                         (5222)
                                         (32222)
		

Crossrefs

This is the relatively prime case of A023894, facs A000688, w/ 1's A023893.
For strict instead of coprime: A054685, facs A050361, with 1's A106244.
The version for factorizations instead of partitions is A354911.
A000041 counts partitions, strict A000009.
A072233 counts partitions by sum and length.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A279784 counts twice-partitions where the latter partitions are constant.
A289509 lists numbers whose prime indices are relatively prime.
A355743 lists numbers with prime-power prime indices, squarefree A356065.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@PrimePowerQ/@#&&GCD@@#==1&]],{n,0,30}]

A382426 MM-numbers of sets of constant multisets with distinct sums.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 14, 15, 17, 19, 21, 22, 23, 30, 31, 33, 34, 38, 41, 42, 46, 51, 53, 55, 57, 59, 62, 66, 67, 69, 77, 82, 83, 85, 93, 95, 97, 102, 103, 106, 109, 110, 114, 115, 118, 119, 123, 127, 131, 133, 134, 138, 154, 155, 157, 159, 161, 165, 166
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2025

Keywords

Comments

Also products of prime numbers of prime power index with distinct sums of prime indices.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The terms together with their prime indices of prime indices begin:
   1: {}
   2: {{}}
   3: {{1}}
   5: {{2}}
   6: {{},{1}}
   7: {{1,1}}
  10: {{},{2}}
  11: {{3}}
  14: {{},{1,1}}
  15: {{1},{2}}
  17: {{4}}
  19: {{1,1,1}}
  21: {{1},{1,1}}
  22: {{},{3}}
  23: {{2,2}}
  30: {{},{1},{2}}
		

Crossrefs

Twice-partitions of this type are counted by A279786.
For just constant blocks we have A302492.
For just distinct sums we have A326535.
Factorizations of this type are counted by A381635.
For strict instead of constant blocks we have A382201.
Normal multiset partitions of this type are counted by A382203.
For equal instead of distinct sums we have A382215.
An opposite version is A382304.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Total/@prix/@prix[#]&&And@@SameQ@@@prix/@prix[#]&]

Formula

Equals A302492 /\ A326535.
Previous Showing 21-24 of 24 results.