cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A387113 Numbers whose prime indices do not have (strictly) choosable initial intervals.

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 27, 28, 32, 36, 40, 44, 48, 52, 54, 56, 60, 64, 68, 72, 76, 80, 81, 84, 88, 90, 92, 96, 100, 104, 108, 112, 116, 120, 124, 126, 128, 132, 135, 136, 140, 144, 148, 150, 152, 156, 160, 162, 164, 168, 172, 176, 180, 184, 188, 189, 192
Offset: 1

Views

Author

Gus Wiseman, Aug 24 2025

Keywords

Comments

The initial interval of a nonnegative integer x is the set {1,...,x}.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We say that a set or sequence of nonempty sets is choosable iff it is possible to choose a different element from each set. For example, ({1,2},{1},{1,3}) is choosable because we have the choice (2,1,3), but ({1,2,3},{1},{1,3},{2}) is not.
This sequence lists all numbers k such that if the prime indices of k are (x1,x2,...,xz), then the sequence of sets (initial intervals) ({1,...,x1},{1,...,x2},...,{1,...,xz}) is not choosable.

Examples

			The prime indices of 18 are {1,2,2}, with initial intervals ({1},{1,2},{1,2}), which have choices (1,1,1), (1,1,2), (1,2,1), (1,2,2), and since none of these are strict, 18 is in the sequence.
The prime indices of 85 are {3,7}, with initial intervals {{1,2,3},{1,2,3,4,5,6,7}}, which are choosable, so 85 is in not the sequence.
The prime indices of 90 are {1,2,2,3}, with initial intervals {{1},{1,2},{1,2},{1,2,3}}, which are not choosable, so 90 is in the sequence.
The terms together with their prime indices begin:
    4: {1,1}
    8: {1,1,1}
   12: {1,1,2}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   27: {2,2,2}
   28: {1,1,4}
   32: {1,1,1,1,1}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   48: {1,1,1,1,2}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   64: {1,1,1,1,1,1}
		

Crossrefs

For partitions instead of initial intervals we have A276079, complement A276078.
For prime factors instead of initial intervals we have A355529, complement A368100.
For divisors instead of initial intervals we have A355740, complement A368110.
These are the positions of 0 in A387111, complement A387134.
The complement is A387112.
Partitions of this type are counted by A387118, complement A238873.
For strict partitions instead of initial intervals we have A387137, complement A387176.
A061395 gives greatest prime index, least A055396.
A112798 lists prime indices, row sums A056239 or A066328, lengths A001222.
A120383 lists numbers divisible by all of their prime indices.
A367902 counts choosable set-systems, complement A367903.
A370582 counts sets with choosable prime factors, complement A370583.
A370585 counts maximal subsets with choosable prime factors.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Select[Tuples[Range/@prix[#]],UnsameQ@@#&]=={}&]

A381807 Number of multisets that can be obtained by choosing a constant partition of each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 2, 4, 12, 24, 92, 184, 704, 2016, 7600, 15200, 80664, 161328, 601696, 2198824, 9868544, 19737088, 102010480, 204020960
Offset: 0

Views

Author

Gus Wiseman, Mar 13 2025

Keywords

Comments

A constant partition is a multiset whose parts are all equal. There are A000005(n) constant partitions of n.

Examples

			The a(1) = 1 through a(4) = 12 multisets:
  {1}  {1,2}    {1,2,3}        {1,2,3,4}
       {1,1,1}  {1,1,1,3}      {1,1,1,3,4}
                {1,1,1,1,2}    {1,2,2,2,3}
                {1,1,1,1,1,1}  {1,1,1,1,2,4}
                               {1,1,1,2,2,3}
                               {1,1,1,1,1,1,4}
                               {1,1,1,1,1,2,3}
                               {1,1,1,1,2,2,2}
                               {1,1,1,1,1,1,1,3}
                               {1,1,1,1,1,1,2,2}
                               {1,1,1,1,1,1,1,1,2}
                               {1,1,1,1,1,1,1,1,1,1}
		

Crossrefs

The number of possible choices was A066843.
Multiset partitions into constant blocks: A006171, A279784, A295935.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Sets of constant multisets with distinct sums: A381635, A381636, A381716.
Strict instead of constant partitions: A381808, A058694, A152827.
A000041 counts integer partitions, strict A000009, constant A000005.
A000688 counts multiset partitions into constant blocks.
A050361 and A381715 count multiset partitions into constant multisets.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],SameQ@@#&]&/@Range[n]]]],{n,0,10}]

Formula

Primorial case of A381453: a(n) = A381453(A002110(n)).

Extensions

a(16)-a(19) from Christian Sievers, Jun 04 2025

A381808 Number of multisets that can be obtained by choosing a strict integer partition of m for each m = 0..n and taking the multiset union.

Original entry on oeis.org

1, 1, 1, 2, 4, 12, 38, 145, 586, 2619, 12096, 58370, 285244, 1436815, 7281062, 37489525, 193417612
Offset: 0

Views

Author

Gus Wiseman, Mar 14 2025

Keywords

Examples

			The a(1) = 1 through a(5) = 12 multisets:
  {1}  {1,2}  {1,2,3}    {1,2,3,4}      {1,2,3,4,5}
              {1,1,2,2}  {1,1,2,2,4}    {1,1,2,2,4,5}
                         {1,1,2,3,3}    {1,1,2,3,3,5}
                         {1,1,1,2,2,3}  {1,1,2,3,4,4}
                                        {1,2,2,3,3,4}
                                        {1,1,1,2,2,3,5}
                                        {1,1,1,2,2,4,4}
                                        {1,1,1,2,3,3,4}
                                        {1,1,2,2,2,3,4}
                                        {1,1,2,2,3,3,3}
                                        {1,1,1,1,2,2,3,4}
                                        {1,1,1,2,2,2,3,3}
		

Crossrefs

Set systems: A050342, A116539, A296120, A318361.
The number of possible choices was A152827, non-strict A058694.
Set multipartitions with distinct sums: A279785, A381718.
Choosing prime factors: A355746, A355537, A327486, A355744, A355742, A355741.
Choosing divisors: A355747, A355733.
Constant instead of strict partitions: A381807, A066843.
A000041 counts integer partitions, strict A000009, constant A000005.
A066723 counts partitions coarser than {1..n}, primorial case of A317141.
A265947 counts refinement-ordered pairs of integer partitions.
A321470 counts partitions finer than {1..n}, primorial case of A300383.

Programs

  • Mathematica
    Table[Length[Union[Sort/@Join@@@Tuples[Select[IntegerPartitions[#],UnsameQ@@#&]&/@Range[n]]]],{n,0,10}]

Extensions

a(12)-a(16) from Christian Sievers, Jun 04 2025
Previous Showing 11-13 of 13 results.