cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A375931 The product of the prime powers in the prime factorization of n that have an exponent that is equal to the maximum exponent in this factorization.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 4, 13, 14, 15, 16, 17, 9, 19, 4, 21, 22, 23, 8, 25, 26, 27, 4, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 8, 41, 42, 43, 4, 9, 46, 47, 16, 49, 25, 51, 4, 53, 27, 55, 8, 57, 58, 59, 4, 61, 62, 9, 64, 65, 66, 67, 4, 69, 70, 71
Offset: 1

Views

Author

Amiram Eldar, Sep 03 2024

Keywords

Comments

Differs from A327526 at n = 12, 20, 28, 40, 44, 45, ... .
Each positive number appears in this sequence either once or infinitely many times:
1. If m is squarefree then the only solution to a(x) = m is x = m.
2. If m = s^k is a power of a squarefree number s with k >= 2, then x = m * i is a solution to a(x) = m for all numbers i that are k-free numbers (i.e., having exponents in their prime factorizations that are all less than k) that are coprime to m.

Examples

			180 = 2^2 * 3^2 * 5, and the maximum exponent in the prime factorization of 180 is 2, which is the exponent of its prime factors 2 and 3. Therefore a(180) = 2^2 * 3^2 = (2*3)^2 = 36.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{f = FactorInteger[n], p, e, i, m}, p = f[[;; , 1]]; e = f[[;; , 2]]; m = Max[e]; i = Position[e, m] // Flatten; (Times @@ p[[i]])^m]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n), p = f[,1], e = f[,2], m); if(n == 1, 1, m = vecmax(e); prod(i = 1, #p, if(e[i] == m, p[i], 1))^m);}

Formula

If n = Product_{i} p_i^e_i (where p_i are distinct primes) then a(n) = Product_{i} p_i^(e_i * [e_i = max_{j} e_j]), where [] is the Iverson bracket.
a(n) = A261969(n)^A051903(n).
a(n) = n / A375932(n).
a(n) = n if and only if n is a power of a squarefree number (A072774).
A051903(a(n)) = A051903(n).
omega(a(n)) = A362611(n).
omega(a(n)) = 1 if and only if n is in A356862.
Omega(a(n)) = A051903(n) * A362611(n).
a(n!) = A060818(n) for n != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = 3/Pi^2 = 0.303963... (A104141).

A364193 Number of integer partitions of n where the least part is the unique mode.

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 7, 9, 13, 17, 24, 32, 43, 58, 75, 97, 130, 167, 212, 274, 346, 438, 556, 695, 865, 1082, 1342, 1655, 2041, 2511, 3067, 3756, 4568, 5548, 6728, 8130, 9799, 11810, 14170, 16980, 20305, 24251, 28876, 34366, 40781, 48342, 57206, 67597, 79703
Offset: 0

Views

Author

Gus Wiseman, Jul 16 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (311)    (33)      (322)      (44)
                    (211)   (2111)   (222)     (511)      (422)
                    (1111)  (11111)  (411)     (3211)     (611)
                                     (3111)    (4111)     (2222)
                                     (21111)   (22111)    (4211)
                                     (111111)  (31111)    (5111)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

For greatest part and multiple modes we have A171979.
Allowing multiple modes gives A240303.
For greatest instead of least part we have A362612, ranks A362616.
For mean instead of least part we have A363723.
These partitions have ranks A364160.
A000041 counts integer partitions.
A362611 counts modes in prime factorization, A362613 co-modes.
A362614 counts partitions by number of modes, co-modes A362615.
A363486 gives least mode in prime indices, A363487 greatest.
A363952 counts partitions by low mode, A363953 high.
Ranking and counting partitions:
- A356862 = unique mode, counted by A362608
- A359178 = unique co-mode, counted by A362610
- A362605 = multiple modes, counted by A362607
- A362606 = multiple co-modes, counted by A362609

Programs

  • Mathematica
    Table[If[n==0,0,Length[Select[IntegerPartitions[n], Last[Length/@Split[#]]>Max@@Most[Length/@Split[#]]&]]],{n,0,30}]

A376249 Numbers that are not prime powers and have a unique largest prime exponent that is larger than the second-largest prime exponent by 1.

Original entry on oeis.org

12, 18, 20, 28, 44, 45, 50, 52, 60, 63, 68, 72, 75, 76, 84, 90, 92, 98, 99, 108, 116, 117, 124, 126, 132, 140, 147, 148, 150, 153, 156, 164, 171, 172, 175, 188, 198, 200, 204, 207, 212, 220, 228, 234, 236, 242, 244, 245, 260, 261, 268, 275, 276, 279, 284, 292, 294
Offset: 1

Views

Author

Amiram Eldar, Sep 16 2024

Keywords

Comments

First differs from A325241 at n = 36: A325241(36) = 2^2 * 3^2 * 5 is not a term of this sequence. Also, a(71) = 360 = 2^3 * 3^2 * 5 is the least term that is not a term of A325241.
Numbers whose unordered prime signature (i.e., sorted, see A118914) ends with two consecutive integers: {..., k, k+1} for some k >= 1.
The asymptotic density of this sequence is Sum_{k >= 1, p prime} (d(k+1, p) - d(k, p))/p^(k+1) = 0.21831645263800520483..., where d(k, p) = 0 for k = 1, and (1-1/p)/((1-1/p^k)*zeta(k)) for k > 1, is the density of terms that have in their prime factorization a prime p with the largest exponent that is > k.

Crossrefs

Subsequence of A356862.

Programs

  • Mathematica
    q[k_] := Module[{e = Sort[FactorInteger[k][[;; , 2]]]}, Length[e] > 1 && e[[-1]] == e[[-2]] + 1]; Select[Range[300], q]
  • PARI
    is(k) = {my(e = vecsort(factor(k)[, 2])); #e > 1 && e[#e] == e[#e-1] + 1;}

A363265 Number of integer factorizations of n with a unique mode.

Original entry on oeis.org

0, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 4, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 5, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 7, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 2, 2, 1, 1, 1, 6, 4, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 27 2023

Keywords

Comments

An integer factorization of n is a multiset of positive integers > 1 with product n.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
Conjecture: 9 is missing from this sequence.

Examples

			The a(n) factorizations for n = 2, 4, 16, 24, 48, 72:
  (2)  (4)    (16)       (24)       (48)         (72)
       (2*2)  (4*4)      (2*2*6)    (3*4*4)      (2*6*6)
              (2*2*4)    (2*2*2*3)  (2*2*12)     (3*3*8)
              (2*2*2*2)             (2*2*2*6)    (2*2*18)
                                    (2*2*3*4)    (2*2*2*9)
                                    (2*2*2*2*3)  (2*2*3*6)
                                                 (2*3*3*4)
                                                 (2*2*2*3*3)
		

Crossrefs

The complement for partitions is A362607, ranks A362605.
The version for partitions is A362608, ranks A356862.
A001055 counts factorizations, strict A045778, ordered A074206.
A089723 counts constant factorizations.
A316439 counts factorizations by length, A008284 partitions.
A339846 counts even-length factorizations, A339890 odd-length.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&, Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[facs[n],Length[modes[#]]==1&]],{n,100}]

A382856 Numbers whose prime indices do not have a mode of 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 50, 51, 53, 54, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 98, 99, 101, 103, 105, 107, 108, 109, 111, 113, 115
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2025

Keywords

Examples

			The terms together with their prime indices begin:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  15: {2,3}
  17: {7}
  18: {1,2,2}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
		

Crossrefs

The case of non-unique mode is A024556.
The complement is A360015 except first.
Partitions of this type are are counted by A382526 except first, complement A241131.
A091602 counts partitions by the greatest multiplicity, rank statistic A051903.
A112798 lists prime indices, length A001222, sum A056239.
A116598 counts ones in partitions, rank statistic A007814.
A240312 counts partitions with max part = max multiplicity, ranks A381542.
A362611 counts modes in prime indices, triangle A362614.
For co-mode see A359178, A362613, A364061 (A364062), A364158 (A364159).

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],FreeQ[Commonest[prix[#]],1]&]
Previous Showing 41-45 of 45 results.