cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-65 of 65 results.

A237596 Convolution triangle of A000958(n+1).

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 8, 7, 3, 1, 24, 22, 12, 4, 1, 75, 73, 43, 18, 5, 1, 243, 246, 156, 72, 25, 6, 1, 808, 844, 564, 283, 110, 33, 7, 1, 2742, 2936, 2046, 1092, 465, 158, 42, 8, 1, 9458, 10334, 7449, 4178, 1906, 714, 217, 52, 9, 1, 33062, 36736, 27231, 15904, 7670, 3096, 1043, 288, 63, 10, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 09 2014

Keywords

Comments

Riordan array (f(x)/x, f(x)) where f(x) is the g.f. of A000958.
Reversal of A236918.
Row sums are A109262(n+1).
Diagonal sums are A033297(n+2).

Examples

			Triangle begins:
    1;
    1,   1;
    3,   2,   1;
    8,   7,   3,   1;
   24,  22,  12,   4,   1;
   75,  73,  43,  18,   5,  1;
  243, 246, 156,  72,  25,  6, 1;
  808, 844, 564, 283, 110, 33, 7, 1;
  ...
		

Crossrefs

Columns give A000958, A114495.
Cf. A033297 (diagonal sums), A109262 (row sums), A236918 (row reversal).

Programs

  • Maple
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> A000958(n)); # Peter Luschny, Oct 19 2022
  • Mathematica
    P[n_, x_]:= P[n, x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, x], {j,0,n}]];
    T[n_, k_] := Coefficient[P[n+1, x], x, k];
    Table[T[n, k], {n,0,13}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
  • SageMath
    def f(n,x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
    def p(n,x):
        if (n==0): return 1
        else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*f(j, x) for j in (0..n) )
    def A237596(n,k): return ( p(n+1,x) ).series(x, n+1).list()[k]
    flatten([[A237596(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2022

Formula

G.f. for the column k-1: ((1-sqrt(1-4*x))^k/(1+sqrt(1-4*x) + 2*x)^k)/x.
Sum_{k=0..n} T(n,k) = A109262(n+1).
From G. C. Greubel, Jun 14 2022: (Start)
T(n, k) = coefficient of [x^k]( p(n+1, x) ), where p(n, x) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n-j)*Fibonacci(j, x) with p(0, x) = 1 and Fibonacci(n, x) are the Fibonacci polynomials.
T(n, k) = A236918(n, n-k). (End)

A344557 Triangle read by rows, T(n, k) = 2^(n - k)*M(n, k, 1/2, 1/2), where M(n, k, x, y) is a generalized Motzkin recurrence. T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 5, 2, 1, 13, 11, 3, 1, 57, 36, 18, 4, 1, 201, 165, 70, 26, 5, 1, 861, 646, 339, 116, 35, 6, 1, 3445, 2863, 1449, 595, 175, 45, 7, 1, 14897, 12104, 6692, 2744, 950, 248, 56, 8, 1, 63313, 53769, 29772, 13236, 4686, 1422, 336, 68, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 25 2021

Keywords

Comments

The convolution triangle of A091147. - Peter Luschny, Oct 07 2022

Examples

			[0]     1;
[1]     1,     1;
[2]     5,     2,     1;
[3]    13,    11,     3,     1;
[4]    57,    36,    18,     4,    1;
[5]   201,   165,    70,    26,    5,    1;
[6]   861,   646,   339,   116,   35,    6,   1;
[7]  3445,  2863,  1449,   595,  175,   45,   7,  1;
[8] 14897, 12104,  6692,  2744,  950,  248,  56,  8, 1;
[9] 63313, 53769, 29772, 13236, 4686, 1422, 336, 68, 9, 1.
		

Crossrefs

A091147 (first column), A344558 (row sums).

Programs

  • Maple
    t := proc(n, k) option remember; if n = k then 1 elif k < 0 or n < 0 or k > n then 0 elif k = 0 then t(n-1, 0)/2 + t(n-1, 1) else t(n-1, k-1) + (1/2)*t(n-1, k) + t(n-1, k+1) fi end: T := (n, k) -> 2^(n-k) * t(n, k):
    for n from 0 to 9 do seq(T(n, k), k = 0..n) od;
    # Uses function PMatrix from A357368. Adds a row and column above and to the right.
    PMatrix(10, n -> simplify(hypergeom([1/2-n/2, 1-n/2], [2], 16))); # Peter Luschny, Oct 07 2022
  • Mathematica
    (* Uses function PMatrix from A357368 *)
    nmax = 9;
    M = PMatrix[nmax+2, HypergeometricPFQ[{1/2 - #/2, 1 - #/2}, {2}, 16]&];
    T[n_, k_] := M[[n+2, k+2]];
    Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 29 2023, after Peter Luschny *)

Formula

The generalized Motzkin recurrence M(n, k, x, y) is defined as follows:
If k < 0 or n < 0 or k > n then 0 else if n = 0 then 1 else if k = 0 then x*M(n-1, 0, x, y) + M(n-1, 1, x, y). In all other cases M(n, k, x, y) = M(n-1, k-1, x, y) + y*M(n-1, k, x, y) + M(n-1, k+1, x, y).

A380115 a(n) = max{A380114(n, k) : k = 0..n}.

Original entry on oeis.org

1, 2, 4, 16, 48, 192, 640, 2560, 8960, 35840, 129024, 516096, 1892352, 7569408, 28114944, 112459776, 421724160, 1686896640, 6372720640, 25490882560, 96865353728, 387461414912, 1479398129664, 5917592518656, 22684104654848, 90736418619392, 348986225459200, 1395944901836800
Offset: 0

Views

Author

Peter Luschny, Feb 03 2025

Keywords

Comments

These are the maxima of the rows of the convolution triangle of 2^n. The maxima of the convolution triangle of 2^(n-1) is A109388. For the definition of the convolution triangle see A357368.

Crossrefs

A162986 Number of Dyck paths with no UUU's and no DDD's of semilength n and having k UD's starting at level 0 (i.e., hills); (0 <= k <= n; U=(1,1), D=(1,-1)).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 2, 2, 3, 0, 1, 4, 5, 3, 4, 0, 1, 8, 10, 9, 4, 5, 0, 1, 17, 21, 18, 14, 5, 6, 0, 1, 37, 46, 40, 28, 20, 6, 7, 0, 1, 82, 102, 90, 66, 40, 27, 7, 8, 0, 1, 185, 230, 204, 152, 100, 54, 35, 8, 9, 0, 1, 423, 526, 469, 353, 235, 143, 70, 44, 9, 10, 0, 1, 978, 1216
Offset: 0

Views

Author

Emeric Deutsch, Oct 11 2009

Keywords

Comments

T is the convolution triangle based on T(n,0) = A004148(n-1) (n >= 1). - Peter Luschny, Oct 19 2022

Examples

			T(5,2)=3 because we have (UD)(UD)UUDUDD, (UD)UUDUDD(UD), and UUDUDD(UD)(UD) (the hills are placed between parentheses).
Triangle starts:
  1;
  0, 1;
  1, 0, 1;
  1, 2, 0, 1;
  2, 2, 3, 0, 1;
  4, 5, 3, 4, 0, 1;
		

Crossrefs

Programs

  • Maple
    g := ((1-z-z^2-sqrt(1-2*z-z^2-2*z^3+z^4))*1/2)/z^3: G := 1/(1-t*z-z^2-z^3*g): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, j), j = 0 .. n) end do; # yields sequence in triangular form
    # Alternative based on a modified form of A004148:
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    M004148 := n -> `if`(n<3, 2-n, hypergeom([(2-n)/2, (3-n)/2, (3-n)/2, (4-n)/2], [2, 2-n, 3-n], 16)):
    PMatrix(10, n -> simplify(M004148(n))); # Peter Luschny, Oct 19 2022

Formula

G(t,z) = 1/(1 - tz - z^2 - z^3*g), where g = 1 + zg + z^2*g + z^3*g^2.
Sum of entries in row n = A004148(n+1) (the secondary structure numbers).
T(n,0) = A004148(n-1) (n>=1).
Sum_{k=0..n} k*T(n,k) = A162987(n).

A357586 Triangle read by rows. Convolution triangle of A002467 (number of permutations with fixed points).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 15, 9, 3, 1, 0, 76, 38, 15, 4, 1, 0, 455, 198, 70, 22, 5, 1, 0, 3186, 1182, 378, 112, 30, 6, 1, 0, 25487, 8115, 2274, 629, 165, 39, 7, 1, 0, 229384, 63266, 15439, 3840, 965, 230, 49, 8, 1, 0, 2293839, 554656, 117921, 25966, 6006, 1401, 308, 60, 9, 1
Offset: 0

Views

Author

Peter Luschny, Oct 09 2022

Keywords

Examples

			[0] 1;
[1] 0,      1;
[2] 0,      1,     1;
[3] 0,      4,     2,     1;
[4] 0,     15,     9,     3,    1;
[5] 0,     76,    38,    15,    4,   1;
[6] 0,    455,   198,    70,   22,   5,   1;
[7] 0,   3186,  1182,   378,  112,  30,   6,  1;
[8] 0,  25487,  8115,  2274,  629, 165,  39,  7,  1;
[9] 0, 229384, 63266, 15439, 3840, 965, 230, 49,  8,  1;
		

Crossrefs

Cf. A002467.

Programs

  • Maple
    # Uses function PMatrix from A357368.
    PMatrix(10, n -> simplify(GAMMA(n+1) - GAMMA(n+1, -1)*exp(-1)));
Previous Showing 61-65 of 65 results.