cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A357705 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with skew-alternating sum k, where k ranges from -n to n in steps of 2.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 0, 2, 2, 0, 1, 0, 3, 1, 2, 0, 1, 0, 3, 2, 3, 2, 0, 1, 0, 4, 2, 4, 1, 3, 0, 1, 0, 4, 3, 3, 6, 2, 3, 0, 1, 0, 5, 3, 5, 3, 7, 2, 4, 0, 1, 0, 5, 4, 5, 4, 9, 7, 3, 4, 0, 1, 0, 6, 4, 7, 3, 12, 5, 10, 3, 5, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Oct 10 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ...

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  2  0  1
  0  2  2  0  1
  0  3  1  2  0  1
  0  3  2  3  2  0  1
  0  4  2  4  1  3  0  1
  0  4  3  3  6  2  3  0  1
  0  5  3  5  3  7  2  4  0  1
  0  5  4  5  4  9  7  3  4  0  1
  0  6  4  7  3 12  5 10  3  5  0  1
  0  6  5  7  5 10 16  7 11  4  5  0  1
  0  7  5  9  5 14 11 18  7 14  4  6  0  1
Row n = 7 counts the following reversed partitions:
  .  (16)   (25)   (34)       (1123)  (1114)   .  (7)
     (115)  (223)  (1222)             (11113)
     (124)         (111112)           (11122)
     (133)         (1111111)
		

Crossrefs

Row sums are A000041.
First nonzero entry of each row is A004526.
The central column is A357640, half A357639.
For original alternating sum we have A344651, ordered A097805.
The half-alternating version is A357704.
The ordered non-reverse version (compositions) is A357646, half A357645.
The non-reverse version is A357638, half A357637.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357629 gives half-alternating sum of prime indices, skew A357630.
A357633 gives half-alternating sum of Heinz partition, skew A357634.

Programs

  • Mathematica
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Table[Length[Select[Reverse/@IntegerPartitions[n],skats[#]==k&]],{n,0,11},{k,-n,n,2}]

A357851 Numbers k such that the half-alternating sum of the prime indices of k is 1.

Original entry on oeis.org

2, 8, 18, 32, 45, 50, 72, 98, 105, 128, 162, 180, 200, 231, 242, 275, 288, 338, 392, 420, 429, 450, 455, 512, 578, 648, 663, 720, 722, 800, 833, 882, 924, 935, 968, 969, 1050, 1058, 1100, 1125, 1152, 1235, 1250, 1311, 1352, 1458, 1463, 1568, 1680, 1682, 1716
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     2: {1}
     8: {1,1,1}
    18: {1,2,2}
    32: {1,1,1,1,1}
    45: {2,2,3}
    50: {1,3,3}
    72: {1,1,1,2,2}
    98: {1,4,4}
   105: {2,3,4}
   128: {1,1,1,1,1,1,1}
   162: {1,2,2,2,2}
   180: {1,1,2,2,3}
   200: {1,1,1,3,3}
		

Crossrefs

The version for k = 0 is A357631, standard compositions A357625-A357626.
The version for original alternating sum is A001105.
Positions of ones in A357629, reverse A357633.
The skew version for k = 0 is A357632, reverse A357636.
Partitions with these Heinz numbers are counted by A035444, skew A035544.
The reverse version is A357635, k = 0 version A000583.
A056239 adds up prime indices, row sums of A112798.
A316524 gives alternating sum of prime indices, reverse A344616.
A351005 = alternately equal and unequal partitions, compositions A357643.
A351006 = alternately unequal and equal partitions, compositions A357644.
A357641 counts comps w/ half-alt sum 0, even-length A357642.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[1000],halfats[primeMS[#]]==1&]
Previous Showing 11-12 of 12 results.