cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-37 of 37 results.

A359397 Squarefree numbers with weakly decreasing first differences of 0-prepended prime indices.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 21, 23, 29, 30, 31, 35, 37, 41, 43, 47, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 89, 91, 97, 101, 103, 105, 107, 109, 113, 119, 127, 131, 133, 137, 139, 143, 149, 151, 157, 163, 167, 173, 179, 181, 187, 191, 193, 197
Offset: 1

Views

Author

Gus Wiseman, Dec 31 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			715 has prime indices {3,5,6}, with first differences (2,1), which are weakly decreasing, so 715 is in the sequence.
		

Crossrefs

This is the squarefree case of A325362.
These are the sorted Heinz numbers of rows of A359361.
A005117 lists squarefree numbers.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A355536 lists first differences of prime indices, 0-prepended A287352.
A358136 lists partial sums of prime indices, row sums A318283.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SquareFreeQ[#]&&GreaterEqual@@Differences[Prepend[primeMS[#],0]]&]

Formula

Intersection of A325362 and A005117.

A363525 Number of integer partitions of n with weighted sum divisible by reverse-weighted sum.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 5, 5, 3, 10, 4, 7, 13, 10, 8, 29, 10, 18, 39, 20, 20, 70, 29, 40, 105, 65, 55, 166, 73, 132, 242, 141, 129, 476, 183, 248, 580, 487, 312, 984, 422, 868, 1345, 825, 724, 2709, 949, 1505, 2756, 2902, 1611, 4664, 2289, 4942, 5828, 4278
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.

Examples

			The partition (6,5,4,3,2,1,1,1,1) has weighted sum 80, reverse 160, so is counted under a(24).
The a(n) partitions for n = 1, 2, 4, 6, 9, 12, 14 (A..E = 10-14):
  1  2   4     6       9          C             E
     11  22    33      333        66            77
         1111  222     711        444           65111
               111111  6111       921           73211
                       111111111  3333          2222222
                                  7311          71111111
                                  63111         11111111111111
                                  222222
                                  621111
                                  111111111111
		

Crossrefs

The case of equality (and reciprocal version) is A000005.
The strict case is A363528.
A000041 counts integer partitions, strict A000009.
A053632 counts compositions by weighted sum, rank statistic A029931/A359042.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.
A363526 = partitions with weighted sum 3n, ranks A363530, reverse A363531.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Divisible[Total[Accumulate[#]], Total[Accumulate[Reverse[#]]]]&]],{n,30}]

A363528 Number of strict integer partitions of n with weighted sum divisible by reverse-weighted sum.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 3, 1, 2, 6, 2, 3, 9, 3, 4, 11, 4, 5, 16, 6, 8, 24, 8, 10, 31, 11, 14, 41, 18, 18, 59, 21, 27, 74, 30, 32, 100, 35, 43, 128, 54, 53, 173, 58, 78, 215, 81, 88, 294, 97, 123, 362, 150, 146, 469, 162, 221, 577
Offset: 1

Views

Author

Gus Wiseman, Jun 10 2023

Keywords

Comments

The (one-based) weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} i*y_i. This is also the sum of partial sums of the reverse.

Examples

			The a(n) partitions for n = 1, 12, 15, 21, 24, 26:
  (1)  (12)     (15)       (21)          (24)          (26)
       (9,2,1)  (11,3,1)   (15,5,1)      (17,6,1)      (11,8,4,2,1)
                (9,3,2,1)  (16,3,2)      (18,4,2)      (12,6,5,2,1)
                           (11,7,2,1)    (12,9,2,1)    (13,5,4,3,1)
                           (12,5,3,1)    (13,7,3,1)
                           (10,5,3,2,1)  (14,5,4,1)
                                         (15,4,3,2)
                                         (10,8,3,2,1)
                                         (11,6,4,2,1)
		

Crossrefs

The non-strict version is A363525.
A000041 counts integer partitions, strict A000009.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, row-sums of A359361.
A318283 gives weighted sum of reversed prime indices, row-sums of A358136.
A320387 counts multisets by weighted sum, zero-based A359678.
A363526 counts partitions with weighted sum 3n, reverse A363531.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Divisible[Total[Accumulate[#]],Total[Accumulate[Reverse[#]]]]&]],{n,30}]

A384009 Irregular triangle read by rows where row n lists the positive first differences of the prime indices of n.

Original entry on oeis.org

1, 2, 1, 3, 1, 1, 2, 2, 4, 1, 5, 3, 1, 1, 3, 6, 1, 1, 7, 4, 2, 1, 2, 4, 1, 8, 1, 2, 5, 5, 1, 2, 3, 6, 9, 1, 1, 10, 2, 3, 1, 3, 6, 7, 2, 1, 1, 11, 1, 7, 1, 1, 4, 2, 12, 1, 2, 4, 13, 8, 4, 1, 1, 2, 8, 9, 14, 5, 1, 3, 3, 2, 1, 5, 5, 1, 1, 15, 1, 2, 2, 10, 3, 1, 6, 6
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 60 are {1,1,2,3}, differences (0,1,1), positive (1,1).
Rows begin:
     1: ()     16: ()       31: ()       46: (8)
     2: ()     17: ()       32: ()       47: ()
     3: ()     18: (1)      33: (3)      48: (1)
     4: ()     19: ()       34: (6)      49: ()
     5: ()     20: (2)      35: (1)      50: (2)
     6: (1)    21: (2)      36: (1)      51: (5)
     7: ()     22: (4)      37: ()       52: (5)
     8: ()     23: ()       38: (7)      53: ()
     9: ()     24: (1)      39: (4)      54: (1)
    10: (2)    25: ()       40: (2)      55: (2)
    11: ()     26: (5)      41: ()       56: (3)
    12: (1)    27: ()       42: (1,2)    57: (6)
    13: ()     28: (3)      43: ()       58: (9)
    14: (3)    29: ()       44: (4)      59: ()
    15: (1)    30: (1,1)    45: (1)      60: (1,1)
		

Crossrefs

Row-lengths are A001221(n) - 1, sums A243055.
For multiplicities instead of differences we have A124010 (prime signature).
Positions of non-strict rows are a subset of A325992.
Including difference 0 gives A355536, 0-prepended A287352.
The 0-prepended version is A383534.
A000040 lists the primes, differences A001223.
A056239 adds up prime indices, row sums of A112798, counted by A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[DeleteCases[Differences[prix[n]],0],{n,100}]

A359757 Greatest positive integer whose weakly increasing prime indices have zero-based weighted sum (A359674) equal to n.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 12167, 11449, 15341, 24389, 16399, 26071, 29791, 31117, 35557, 50653, 39401, 56129, 68921, 58867, 72283, 83521, 79007, 86903, 103823
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2023

Keywords

Comments

Appears to first differ from A001248 at a(27) = 12167, A001248(27) = 10609.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The zero-based weighted sum of a sequence (y_1,...,y_k) is Sum_{i=1..k} (i-1)*y_i.

Examples

			The terms together with their prime indices begin:
    4: {1,1}
    9: {2,2}
   25: {3,3}
   49: {4,4}
  121: {5,5}
  169: {6,6}
  289: {7,7}
  361: {8,8}
  529: {9,9}
  841: {10,10}
		

Crossrefs

The one-based version is A359497, minimum A359682 (sorted A359755).
Last position of n in A359674, reverse A359677.
The minimum instead of maximum is A359676, sorted A359675, reverse A359681.
A053632 counts compositions by zero-based weighted sum.
A112798 lists prime indices, length A001222, sum A056239, reverse A296150.
A124757 = zero-based weighted sum of standard compositions, reverse A231204.
A304818 gives weighted sums of prime indices, reverse A318283.
A320387 counts multisets by weighted sum, zero-based A359678.
A358136 = partial sums of prime indices, ranked by A358137, reverse A359361.

Programs

  • Mathematica
    nn=10;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    wts[y_]:=Sum[(i-1)*y[[i]],{i,Length[y]}];
    seq=Table[wts[prix[n]],{n,2^nn}];
    Table[Position[seq,k][[-1,1]],{k,nn}]
  • PARI
    a(n)={ my(recurse(r, k, m) = if(k==1, if(m>=r, prime(r)^2),
        my(z=0); for(j=1, min(m, (r-k*(k-1)/2)\k), z=max(z, self()(r-k*j, k-1, j)*prime(j))); z));
      vecmax(vector((sqrtint(8*n+1)-1)\2, k, recurse(n,k,n)));
    } \\ Andrew Howroyd, Jan 21 2023

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 21 2023

A366529 Heinz numbers of integer partitions of even numbers with at least one even part.

Original entry on oeis.org

3, 7, 9, 12, 13, 19, 21, 27, 28, 29, 30, 36, 37, 39, 43, 48, 49, 52, 53, 57, 61, 63, 66, 70, 71, 75, 76, 79, 81, 84, 87, 89, 90, 91, 101, 102, 107, 108, 111, 112, 113, 116, 117, 120, 129, 130, 131, 133, 138, 139, 144, 147, 148, 151, 154, 156, 159, 163, 165
Offset: 1

Views

Author

Gus Wiseman, Oct 16 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The terms together with their prime indices begin:
   3: {2}
   7: {4}
   9: {2,2}
  12: {1,1,2}
  13: {6}
  19: {8}
  21: {2,4}
  27: {2,2,2}
  28: {1,1,4}
  29: {10}
  30: {1,2,3}
  36: {1,1,2,2}
  37: {12}
  39: {2,6}
  43: {14}
  48: {1,1,1,1,2}
		

Crossrefs

The complement is counted by A047967.
For all even parts we have A066207, counted by A035363, odd A066208.
Not requiring an even part gives A300061.
For odd instead of even we have A300063.
Not requiring even sum gives A324929.
Partitions of this type are counted by A366527.
A112798 list prime indices, sum A056239.
A257991 counts odd prime indices, distinct A324966.
A257992 counts even prime indices, distinct A324967.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],EvenQ[Total[prix[#]]]&&Or@@EvenQ/@prix[#]&]

A384008 Irregular triangle read by rows where row n lists the first differences of the 0-prepended prime indices of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 1, 1, 4, 1, 2, 5, 6, 1, 3, 2, 1, 7, 8, 2, 2, 1, 4, 9, 1, 5, 10, 1, 1, 1, 11, 2, 3, 1, 6, 3, 1, 12, 1, 7, 2, 4, 13, 1, 1, 2, 14, 1, 8, 15, 2, 5, 16, 3, 2, 2, 6, 1, 9, 17, 18, 1, 10, 3, 3, 1, 1, 3, 19, 2, 7, 1, 2, 1, 20, 21, 1, 11, 4, 1, 1, 1, 4, 22, 1, 12, 23, 3, 4
Offset: 1

Views

Author

Gus Wiseman, May 23 2025

Keywords

Comments

All rows are different.

Examples

			The 28-th squarefree number is 42, with 0-prepended prime indices (0,1,2,4), with differences (1,1,2), so row 28 is (1,1,2).
The squarefree numbers and corresponding rows begin:
    1: ()        23: (9)        47: (15)
    2: (1)       26: (1,5)      51: (2,5)
    3: (2)       29: (10)       53: (16)
    5: (3)       30: (1,1,1)    55: (3,2)
    6: (1,1)     31: (11)       57: (2,6)
    7: (4)       33: (2,3)      58: (1,9)
   10: (1,2)     34: (1,6)      59: (17)
   11: (5)       35: (3,1)      61: (18)
   13: (6)       37: (12)       62: (1,10)
   14: (1,3)     38: (1,7)      65: (3,3)
   15: (2,1)     39: (2,4)      66: (1,1,3)
   17: (7)       41: (13)       67: (19)
   19: (8)       42: (1,1,2)    69: (2,7)
   21: (2,2)     43: (14)       70: (1,2,1)
   22: (1,4)     46: (1,8)      71: (20)
		

Crossrefs

Row-lengths are A072047, sums A243290.
This is the restriction of A383534 (ranked by A383535) to rows of squarefree index.
A000040 lists the primes, differences A001223.
A048767 is the Look-and-Say transform, union A351294, complement A351295.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A320348 counts strict partitions with distinct 0-appended differences, ranks A325388.
A325324 counts partitions with distinct 0-appended differences, ranks A325367.

Programs

  • Mathematica
    sql=Select[Range[100],SquareFreeQ];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Differences[Prepend[prix[sql[[n]]],0]],{n,Length[sql]}]
Previous Showing 31-37 of 37 results.