A359892
Members of A026424 (numbers with an odd number of prime factors) whose prime indices do not have the same mean as median.
Original entry on oeis.org
12, 18, 20, 28, 42, 44, 45, 48, 50, 52, 63, 66, 68, 70, 72, 75, 76, 78, 80, 92, 98, 99, 102, 108, 112, 114, 116, 117, 120, 124, 130, 138, 147, 148, 153, 154, 162, 164, 165, 168, 170, 171, 172, 174, 175, 176, 180, 182, 186, 188, 190, 192, 195, 200, 207, 208
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
28: {1,1,4}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
50: {1,3,3}
52: {1,1,6}
63: {2,2,4}
66: {1,2,5}
68: {1,1,7}
70: {1,3,4}
72: {1,1,1,2,2}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is in the sequence.
A subset of
A026424 = numbers with odd bigomega.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359902 counts odd-length partitions by median.
Cf.
A240219,
A327473,
A327476,
A348551,
A359894,
A359898,
A359899,
A359900,
A359911,
A359912,
A360006-
A360009.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]!=Median[prix[#]]&]
A363721
Number of odd-length integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.
Original entry on oeis.org
1, 1, 2, 1, 2, 2, 2, 1, 3, 3, 2, 2, 2, 5, 7, 1, 2, 8, 2, 9, 16, 11, 2, 2, 15, 16, 37, 33, 2, 44, 2, 1, 79, 33, 103, 127, 2, 47, 166, 39, 2, 214, 2, 384, 738, 90, 2, 2, 277, 185, 631, 1077, 2, 1065, 1560, 477, 1156, 223, 2, 2863
Offset: 1
The a(n) partitions for n = {1, 3, 9, 14, 15, 18, 20, 22} (A..M = 10..22):
1 3 9 E F I K M
111 333 2222222 555 666 44444 22222222222
111111111 3222221 33333 222222222 54443 32222222221
3322211 43332 322222221 64442 33222222211
4222211 53331 332222211 65441 33322222111
63321 422222211 74432 42222222211
111111111111111 432222111 74441 43222222111
522222111 84431 44222221111
94421 52222222111
53222221111
62222221111
All odd-length partitions are counted by
A027193.
A008284 counts partitions by length (or negative mean), strict
A008289.
A362608 counts partitions with a unique mode.
A363726 counts odd-length partitions with a unique mode.
-
modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
Comments