A359889
Numbers that are 1 or whose prime indices have the same mean as median.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1
The prime indices of 900 are {1,1,2,2,3,3}, with mean 2 and median 2, so 900 is in the sequence.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],#==1||Mean[prix[#]]==Median[prix[#]]&]
A359894
Number of integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 3, 10, 13, 20, 28, 49, 53, 93, 113, 145, 203, 287, 329, 479, 556, 724, 955, 1242, 1432, 1889, 2370, 2863, 3502, 4549, 5237, 6825, 8108, 9839, 12188, 14374, 16958, 21617, 25852, 30582, 36100, 44561, 51462, 63238, 73386, 85990, 105272, 124729
Offset: 0
The a(4) = 1 through a(8) = 13 partitions:
(211) (221) (411) (322) (332)
(311) (3111) (331) (422)
(2111) (21111) (421) (431)
(511) (521)
(2221) (611)
(3211) (4211)
(4111) (5111)
(22111) (22211)
(31111) (32111)
(211111) (41111)
(221111)
(311111)
(2111111)
The complement is counted by
A240219.
A008289 counts strict partitions by mean.
A359909 counts factorizations with the same mean as median, odd-len
A359910.
-
Table[Length[Select[IntegerPartitions[n],Mean[#]!=Median[#]&]],{n,0,30}]
A359890
Numbers whose prime indices do not have the same mean as median.
Original entry on oeis.org
12, 18, 20, 24, 28, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 92, 96, 98, 99, 102, 104, 108, 112, 114, 116, 117, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156, 160, 162, 164, 165
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
18: {1,2,2}
20: {1,1,3}
24: {1,1,1,2}
28: {1,1,4}
40: {1,1,1,3}
42: {1,2,4}
44: {1,1,5}
45: {2,2,3}
48: {1,1,1,1,2}
For example, the prime indices of 360 are {1,1,1,2,2,3}, with mean 5/3 and median 3/2, so 360 is in the sequence.
These partitions are counted by
A359894.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[1000],Mean[prix[#]]!=Median[prix[#]]&]
A359895
Number of odd-length integer partitions of n whose parts have the same mean as median.
Original entry on oeis.org
0, 1, 1, 2, 1, 2, 3, 2, 1, 5, 5, 2, 5, 2, 8, 18, 1, 2, 19, 2, 24, 41, 20, 2, 9, 44, 31, 94, 102, 2, 125, 2, 1, 206, 68, 365, 382, 2, 98, 433, 155, 2, 716, 2, 1162, 2332, 196, 2, 17, 1108, 563, 1665, 3287, 2, 3906, 5474, 2005, 3083, 509, 2, 9029
Offset: 0
The a(1) = 1 through a(9) = 5 partitions:
(1) (2) (3) (4) (5) (6) (7) (8) (9)
(111) (11111) (222) (1111111) (333)
(321) (432)
(531)
(111111111)
The a(15) = 18 partitions:
(15)
(5,5,5)
(6,5,4)
(7,5,3)
(8,5,2)
(9,5,1)
(3,3,3,3,3)
(4,3,3,3,2)
(4,4,3,2,2)
(4,4,3,3,1)
(5,3,3,2,2)
(5,3,3,3,1)
(5,4,3,2,1)
(5,5,3,1,1)
(6,3,3,2,1)
(6,4,3,1,1)
(7,3,3,1,1)
(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)
The complement is counted by
A359896.
The version for factorizations is
A359910.
-
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]==Median[#]&]],{n,0,30}]
-
\\ P(n, k, m) is g.f. for k parts of max size m.
P(n, k, m)={polcoef(1/prod(i=1, m, 1 - y*x^i + O(x*x^n)), k, y)}
a(n)={if(n==0, 0, sumdiv(n, d, if(d%2, my(m=n/d, h=d\2, r=n-m*(h+1)+h); polcoef(P(r, h, m)*P(r, h, r), r))))} \\ Andrew Howroyd, Jan 21 2023
A359900
Number of strict odd-length integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 4, 5, 4, 8, 10, 8, 15, 18, 17, 26, 27, 31, 43, 51, 53, 59, 81, 87, 109, 127, 115, 169, 194, 213, 255, 243, 322, 379, 431, 478, 487, 629, 667, 804, 907, 902, 1151, 1294, 1439, 1530, 1674, 2031, 2290, 2559, 2829, 2973, 3296, 3939
Offset: 0
The a(7) = 1 through a(16) = 15 partitions (A=10, B=11, C=12, D=13):
(421) (431) (621) (532) (542) (651) (643) (653) (762) (754)
(521) (541) (632) (732) (652) (743) (843) (763)
(631) (641) (831) (742) (752) (861) (853)
(721) (731) (921) (751) (761) (942) (862)
(821) (832) (842) (A32) (871)
(841) (851) (A41) (943)
(931) (932) (B31) (952)
(A21) (941) (C21) (961)
(A31) (A42)
(B21) (A51)
(B32)
(B41)
(C31)
(D21)
(64321)
The complement is counted by
A359899.
A008289 counts strict partitions by mean.
Cf.
A000016,
A065795,
A066571,
A102627,
A240850,
A240851,
A327475,
A359894,
A359906,
A359907,
A359910.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]
A359896
Number of odd-length integer partitions of n whose parts do not have the same mean as median.
Original entry on oeis.org
0, 0, 0, 0, 1, 2, 2, 6, 9, 11, 15, 27, 32, 50, 58, 72, 112, 149, 171, 246, 286, 359, 477, 630, 773, 941, 1181, 1418, 1749, 2289, 2668, 3429, 4162, 4878, 6074, 7091, 8590, 10834, 12891, 15180, 18491, 22314, 25845, 31657, 36394, 42269, 52547, 62414, 73576, 85701
Offset: 0
The a(4) = 1 through a(9) = 11 partitions:
(211) (221) (411) (322) (332) (441)
(311) (21111) (331) (422) (522)
(421) (431) (621)
(511) (521) (711)
(22111) (611) (22221)
(31111) (22211) (32211)
(32111) (33111)
(41111) (42111)
(2111111) (51111)
(2211111)
(3111111)
These partitions are ranked by
A359892.
-
Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&Mean[#]!=Median[#]&]],{n,0,30}]
A359891
Members of A026424 (numbers with an odd number of prime factors) whose prime indices have the same mean as median.
Original entry on oeis.org
2, 3, 5, 7, 8, 11, 13, 17, 19, 23, 27, 29, 30, 31, 32, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 105, 107, 109, 110, 113, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233
Offset: 1
The terms together with their prime indices begin:
2: {1}
3: {2}
5: {3}
7: {4}
8: {1,1,1}
11: {5}
13: {6}
17: {7}
19: {8}
23: {9}
27: {2,2,2}
29: {10}
30: {1,2,3}
31: {11}
32: {1,1,1,1,1}
For example, the prime indices of 180 are {1,1,2,2,3}, with mean 9/5 and median 2, so 180 is not in the sequence.
A subset of
A026424 = numbers with odd bigomega.
The RHS (median of prime indices) is
A360005/2.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],OddQ[PrimeOmega[#]]&&Mean[prix[#]]==Median[prix[#]]&]
Showing 1-7 of 7 results.
Comments