cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A370788 Cubefull numbers with an odd number of prime factors (counted with multiplicity).

Original entry on oeis.org

8, 27, 32, 125, 128, 243, 343, 432, 512, 648, 1331, 1728, 2000, 2048, 2187, 2197, 2592, 3125, 3888, 4913, 5000, 5488, 5832, 6859, 6912, 8000, 8192, 10125, 10368, 12167, 15552, 16807, 16875, 19208, 19683, 20000, 21296, 21952, 23328, 24389, 27000, 27648, 27783, 29791
Offset: 1

Views

Author

Amiram Eldar, Mar 02 2024

Keywords

Comments

Jakimczuk (2024) proved:
The number of terms that do not exceed x is N(x) = c * x^(1/3) / 2 + o(x^(1/3)) where c = A362974.
The relative asymptotic density of this sequence within the cubefull numbers is 1/2.
In general, the relative asymptotic density of the s-full numbers (numbers whose exponents in their prime factorization are all >= s) with an odd number of prime factors (counted with multiplicity) within the s-full numbers is 1/2 when s is odd.

Crossrefs

Intersection of A036966 and A026424.
Complement of A370787 within A036966.
Subsequence of A370786.
Cf. A362974.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, AllTrue[e, # > 2 &] && OddQ[Total[e]]]; Select[Range[30000], q]
  • PARI
    is(n) = {my(e = factor(n)[, 2]); n > 1 && vecmin(e) > 2 && vecsum(e)%2;}

A362971 Partials sums of the cubefull numbers (A036966).

Original entry on oeis.org

1, 9, 25, 52, 84, 148, 229, 354, 482, 698, 941, 1197, 1540, 1972, 2484, 3109, 3757, 4486, 5350, 6350, 7374, 8670, 10001, 11729, 13673, 15673, 17721, 19908, 22105, 24506, 27098, 29842, 32967, 36342, 39798, 43686, 47686, 51782, 56695, 61695, 66879, 72367, 78199
Offset: 1

Views

Author

Amiram Eldar, May 13 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Select[Range[10000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    lista(kmax) = {my(s = 0); for(k = 1, kmax, if(k==1 || vecmin(factor(k)[, 2]) > 2, s += k; print1(s, ", ")));}

Formula

a(n) = Sum_{k=1..n} A036966(k).
a(n) = c * A036966(n)^(4/3) + o(A036966(n)^(4/3)), where c = A362974 / 4 = 1.1648165306... (Jakimczuk, 2017).
a(n) ~ c * n^4, where c = 1/(4 * A362974 ^ 3) = 0.002471652768... .

A371185 Indices of the cubefull numbers in the sequence of powerful numbers.

Original entry on oeis.org

1, 3, 5, 7, 8, 11, 13, 17, 18, 23, 25, 26, 30, 34, 38, 41, 42, 45, 49, 54, 55, 61, 63, 72, 77, 78, 80, 82, 83, 87, 89, 93, 99, 105, 106, 113, 115, 116, 127, 128, 130, 137, 140, 148, 151, 153, 161, 164, 166, 179, 185, 186, 188, 192, 196, 201, 206, 221, 227, 234
Offset: 1

Views

Author

Amiram Eldar, Mar 14 2024

Keywords

Examples

			The first 5 powerful numbers are 1, 4, 8, 9, and 16. The 1st, 3rd, and 5th, 1, 8, and 16, are also cubefull numbers. Therefore, the first 3 terms of this sequence are 1, 3, and 5.
		

Crossrefs

Similar sequences: A361936, A371186.

Programs

  • Mathematica
    powQ[n_, emin_] := n == 1 || AllTrue[FactorInteger[n], Last[#] >= emin &]; Position[Select[Range[20000], powQ[#, 2] &], _?(powQ[#1, 3] &), Heads -> False] // Flatten
  • PARI
    ispow(n, emin) = n == 1 || vecmin(factor(n)[, 2]) >= emin;
    lista(kmax) = {my(f, c = 0); for(k = 1, kmax, if(ispow(k, 2), c++; if(ispow(k, 3), print1(c, ", "))));}
    
  • Python
    from math import isqrt, gcd
    from sympy import mobius, integer_nthroot, factorint
    def A371185(n):
        def squarefreepi(n): return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x):
            c = n+x
            for w in range(1,integer_nthroot(x,5)[0]+1):
                if all(d<=1 for d in factorint(w).values()):
                    for y in range(1,integer_nthroot(z:=x//w**5,4)[0]+1):
                        if gcd(w,y)==1 and all(d<=1 for d in factorint(y).values()):
                            c -= integer_nthroot(z//y**4,3)[0]
            return c
        c, l, m = 0, 0, bisection(f,n,n)
        j = isqrt(m)
        while j>1:
            k2 = integer_nthroot(m//j**2,3)[0]+1
            w = squarefreepi(k2-1)
            c += j*(w-l)
            l, j = w, isqrt(m//k2**3)
        c += squarefreepi(integer_nthroot(m,3)[0])-l
        return c # Chai Wah Wu, Sep 12 2024

Formula

A001694(a(n)) = A036966(n).
a(n) ~ c * n^(3/2), where c = A090699 / A362974^(3/2) = 0.216089803749...

A378485 Decimal expansion of Product_{p prime} (1 + 1/p^(5/4) + 1/p^(3/2) + 1/p^(7/4)).

Original entry on oeis.org

9, 6, 6, 9, 4, 7, 5, 4, 8, 4, 3, 8, 2, 3, 6, 8, 1, 0, 6, 5, 0, 0, 6, 6, 6, 9, 4, 3, 2, 0, 0, 8, 1, 7, 9, 3, 8, 0, 9, 2, 7, 2, 4, 8, 4, 4, 4, 7, 6, 3, 8, 8, 8, 7, 0, 7, 8, 4, 6, 2, 6, 5, 7, 1, 3, 9, 3, 3, 9, 3, 8, 6, 8, 1, 2, 5, 1, 9, 3, 5, 5, 6, 1, 1, 1, 9, 6, 3, 1, 4, 2, 8, 4, 0, 3, 0, 3, 3, 4, 1
Offset: 1

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			9.669475484382368106500666943200817938092724844476...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + 1/p^5 + 1/p^6 + 1/p^7, 1/4)

A378486 Decimal expansion of Product_{p prime} (1 + 1/p^(6/5) + 1/p^(7/5) + 1/p^(8/5) + 1/p^(9/5)).

Original entry on oeis.org

1, 9, 4, 4, 5, 5, 7, 6, 0, 8, 3, 9, 0, 0, 5, 7, 1, 1, 3, 9, 0, 8, 0, 0, 8, 9, 3, 2, 8, 9, 9, 1, 3, 5, 4, 6, 4, 7, 1, 1, 9, 5, 0, 5, 0, 7, 5, 4, 8, 5, 7, 0, 8, 0, 2, 7, 3, 0, 8, 9, 8, 6, 3, 0, 3, 5, 8, 9, 5, 9, 6, 1, 5, 4, 2, 5, 0, 2, 5, 5, 8, 8, 6, 7, 0, 4, 9, 7, 6, 3, 2, 5, 6, 6, 2, 9, 7, 7, 3, 5
Offset: 2

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			19.445576083900571139080089328991354647119505075485...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    prodeulerrat(1 + 1/p^6 + 1/p^7 + 1/p^8 + 1/p^9, 1/5)

A378487 Decimal expansion of Product_{p prime} (1 + 1/p^(6/5) + 1/p^(7/5) - 1/p^2 - 1/p^(11/5) - 1/p^(12/5)) (negated).

Original entry on oeis.org

1, 6, 9, 7, 8, 7, 8, 1, 4, 8, 3, 4, 3, 5, 2, 4, 3, 9, 9, 2, 7, 9, 9, 7, 0, 6, 2, 6, 1, 4, 0, 3, 1, 3, 3, 2, 3, 4, 1, 2, 5, 8, 7, 3, 3, 4, 2, 9, 5, 9, 5, 4, 0, 4, 6, 7, 5, 1, 4, 1, 2, 5, 6, 6, 4, 9, 0, 8, 1, 4, 6, 0, 9, 6, 5, 7, 0, 6, 1, 6, 9, 0, 5, 5, 4, 3, 0, 4, 7, 2, 7, 4, 9, 3, 8, 6, 3, 1, 1, 8
Offset: 2

Views

Author

Stefano Spezia, Nov 28 2024

Keywords

Examples

			-16.978781483435243992799706261403133234125873342959...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.6.1, p. 114.

Crossrefs

Programs

  • PARI
    zeta(4/5)*prodeulerrat(1 + 1/p^6 + 1/p^7 - 1/p^10 - 1/p^11 - 1/p^12, 1/5)

A362972 Squarefree kernels of cubefull numbers (A036966).

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 5, 2, 6, 3, 2, 7, 6, 2, 5, 6, 3, 6, 10, 2, 6, 11, 6, 6, 10, 2, 3, 13, 7, 6, 14, 5, 15, 6, 6, 10, 2, 17, 10, 6, 14, 6, 3, 19, 6, 6, 10, 2, 21, 10, 15, 6, 22, 14, 6, 23, 6, 11, 6, 5, 10, 2, 7, 15, 6, 26, 14, 3, 10, 6, 22, 14, 6, 29, 10, 30, 6
Offset: 1

Views

Author

Amiram Eldar, May 13 2023

Keywords

Examples

			A036966(2) = 8 = 2^3, therefore a(2) = 2.
A036966(10) = 216 = 2^3 * 3^2, therefore a(10) = 2 * 3 = 6.
		

Crossrefs

Programs

  • Mathematica
    seq[kmax_] := Module[{s = {1}}, Do[f = FactorInteger[k]; If[Min@f[[;; , 2]] > 2, AppendTo[s, Times @@ f[[;; , 1]]]], {k, 2, kmax}]; s]; seq[10^5]
  • PARI
    lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(k==1 || vecmin(f[, 2]) > 2, print1(vecprod(f[, 1]), ", ")));}

Formula

a(n) = A007947(A036966(n)).
Sum_{A036966(k) < x} a(k) = c * x^(2/3) + o(x^(2/3)), where c = (3/Pi^2) * Product_{p prime} (1 + 1/((p+1)*(p^(2/3)-1))) = 0.7356919531... (Jakimczuk, 2017). [corrected Sep 21 2024]
Sum_{k=1..n} a(k) ~ (c / A362974 ^ 2) * n^2, where c is the constant above.

A363013 a(n) is the number of prime factors (counted with multiplicity) of the n-th cubefull number (A036966).

Original entry on oeis.org

0, 3, 4, 3, 5, 6, 4, 3, 7, 6, 5, 8, 3, 7, 9, 4, 7, 6, 8, 6, 10, 8, 3, 9, 8, 7, 11, 7, 3, 4, 9, 6, 5, 6, 10, 9, 8, 12, 3, 7, 10, 7, 9, 8, 3, 11, 10, 9, 13, 6, 8, 7, 11, 6, 8, 10, 3, 12, 4, 11, 6, 10, 14, 5, 7, 10, 6, 7, 9, 9, 12, 7, 9, 11, 3, 8, 9, 13, 7, 4, 3
Offset: 1

Views

Author

Amiram Eldar, May 13 2023

Keywords

Crossrefs

Similar sequences: A072047, A076399, A360729.

Programs

  • Mathematica
    PrimeOmega[Select[Range[10000], # == 1 || Min[FactorInteger[#][[;; , 2]]] > 2 &]]
  • PARI
    iscubefull(n) = n==1 || vecmin(factor(n)[, 2]) > 2;
    apply(bigomega, select(iscubefull, [1..10000]))

Formula

a(n) = A001222(A036966(n)).
a(n) >= 3, for n > 1.
Sum_{A036966(k) < x} a(k) = 3*c*x^(1/3)*log(log(x)) + (3*(B_2 - log(2)) + Sum_{p prime} ((4*p^(1/3)+5)/(p^(5/3)+p^(1/3)+1)))*c*x^(1/3) + O(x^(1/3)/sqrt(log(x))), where B_2 = A083342 and c = A362974 (Jakimczuk and Lalín, 2022). [corrected Sep 21 2024]
Previous Showing 11-18 of 18 results.