cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A366239 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^2*A(x)^3.

Original entry on oeis.org

1, 2, 8, 49, 329, 2401, 18452, 147140, 1206157, 10101011, 86047138, 743288984, 6495476548, 57321239999, 510104531479, 4572492374150, 41247768216331, 374175606700172, 3411195598361653, 31236732721224722, 287182875831208468, 2649838553953071239
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,n-k) * binomial(3*k,k)/(2*k+1).

A366240 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^3*A(x)^3.

Original entry on oeis.org

1, 2, 9, 60, 432, 3378, 27792, 237122, 2079132, 18620709, 169614960, 1566540573, 14635978998, 138080055192, 1313596636812, 12587218990644, 121378106852988, 1176981533610012, 11469587139406515, 112265849283068877, 1103256200355696855
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,n-k) * binomial(3*k,k)/(2*k+1).

A366241 G.f. A(x) satisfies A(x) = 1 + x + x*(1 + x)^4*A(x)^3.

Original entry on oeis.org

1, 2, 10, 72, 552, 4593, 40185, 364413, 3395217, 32305005, 312589540, 3066565720, 30430287693, 304907935707, 3080617021926, 31349533179726, 321038696185371, 3305935381202847, 34211612434972446, 355605873560512974, 3710978684625678870
Offset: 0

Views

Author

Seiichi Manyama, Oct 05 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(6*k+1, n-k)*binomial(3*k, k)/(2*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(6*k+1,n-k) * binomial(3*k,k)/(2*k+1).

A379037 G.f. A(x) satisfies A(x) = ( (1 + x) * (1 + x*A(x)^(3/2)) )^2.

Original entry on oeis.org

1, 4, 18, 106, 689, 4782, 34707, 260190, 1999168, 15660176, 124596498, 1004110948, 8179379807, 67239070868, 557098881919, 4647368670950, 39001655222787, 329048378867468, 2789241880512898, 23743798316713368, 202894843070927859, 1739775692700850554
Offset: 0

Views

Author

Seiichi Manyama, Dec 14 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 2*sum(k=0, n, binomial(3*k+2, k)*binomial(3*k+2, n-k)/(3*k+2));

Formula

G.f.: A(x) = B(x)^2 where B(x) is the g.f. of A364336.
a(n) = 2 * Sum_{k=0..n} binomial(3*k+2,k) * binomial(3*k+2,n-k)/(3*k+2).

A379159 G.f. A(x) satisfies A(x) = (1 + x^3) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 3, 13, 59, 294, 1548, 8473, 47694, 274347, 1605553, 9529080, 57219636, 346989180, 2121996165, 13071868062, 81039237719, 505230120558, 3165528142389, 19922166970041, 125882558097870, 798300369383649, 5079196380442687, 32413550247722622, 207420591733202421
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\3, binomial(3*n-9*k+1, k)*binomial(3*n-9*k+1, n-3*k)/(3*n-9*k+1));

Formula

a(n) = Sum_{k=0..floor(n/3)} binomial(3*n-9*k+1,k) * binomial(3*n-9*k+1,n-3*k)/(3*n-9*k+1).

A379160 G.f. A(x) satisfies A(x) = (1 + x^4) * (1 + x*A(x)^3).

Original entry on oeis.org

1, 1, 3, 12, 56, 277, 1449, 7872, 43978, 251049, 1457910, 8585724, 51152973, 307770236, 1867362978, 11412645576, 70194232585, 434157164246, 2698676669337, 16849393604484, 105621663128839, 664493496025485, 4194246946152171, 26553277765995984, 168567628890184974, 1072818569798746567
Offset: 0

Views

Author

Seiichi Manyama, Dec 17 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(3*n-12*k+1, k)*binomial(3*n-12*k+1, n-4*k)/(3*n-12*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(3*n-12*k+1,k) * binomial(3*n-12*k+1,n-4*k)/(3*n-12*k+1).
Previous Showing 11-16 of 16 results.