cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A364462 Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

Also Heinz numbers of a type of sum-full partitions not allowing re-used parts, counted by A237113.
No partitions of this type are knapsack (A299702, A299729).
All multiples of terms are terms. - Robert Israel, Aug 30 2023

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   72: {1,1,1,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
		

Crossrefs

Subsets not of this type are counted by A085489, w/ re-usable parts A007865.
Subsets of this type are counted by A088809, with re-usable parts A093971.
Partitions not of this type are counted by A236912.
Partitions of this type are counted by A237113.
Subset of A299729.
The complement with re-usable parts is A364347, counted by A364345.
With re-usable parts we have A364348, counted by A363225 (strict A363226).
The complement is A364461.
The non-binary complement is A364531, counted by A237667.
The non-binary version is A364532, see also A364350.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Maple
    filter:= proc(n) local F, i,j,m;
      F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]);
      for i from 1 to nops(F)-1 do for j from 1 to i-1 do
        if member(F[i]+F[j],F) then return true fi
      od od;
      false
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]

A364531 Positive integers with no prime index equal to the sum of prime indices of any nonprime divisor.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76, 77
Offset: 1

Views

Author

Gus Wiseman, Aug 01 2023

Keywords

Comments

First differs from A299702 (knapsack) in having 525: {2,3,3,4}.
First differs from A325778 in lacking 462: {1,2,4,5}.
These are the Heinz numbers of partitions whose parts are disjoint from their own non-singleton subset-sums.

Crossrefs

Partitions of this type are counted by A237667, strict A364349.
The binary version is A364462, complement A364461.
The complement is A364532, counted by A237668.
A000005 counts divisors, nonprime A033273, composite A055212.
A299701 counts distinct subset-sums of prime indices.
A299702 ranks knapsack partitions, counted by A108917, complement A299729.
A363260 counts partitions disjoint from differences, complement A364467.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Subsets[prix[#],{2,Length[prix[#]]}]]=={}&]

A364670 Number of strict integer partitions of n with a part equal to the sum of two distinct others. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 7, 6, 10, 10, 14, 16, 24, 25, 34, 39, 48, 59, 71, 81, 103, 120, 136, 166, 194, 226, 260, 312, 353, 419, 473, 557, 636, 742, 824, 974, 1097, 1266, 1418, 1646, 1837, 2124, 2356, 2717, 3029, 3469, 3830, 4383, 4884, 5547
Offset: 0

Views

Author

Gus Wiseman, Aug 03 2023

Keywords

Examples

			The a(6) = 1 through a(16) = 10 strict partitions (A = 10):
  321  .  431  .  532   5321  642   5431  743   6432   853
                  541         651   6421  752   6531   862
                  4321        5421  7321  761   7431   871
                              6321        5432  7521   6532
                                          6431  9321   6541
                                          6521  54321  7432
                                          8321         7621
                                                       8431
                                                       A321
                                                       64321
		

Crossrefs

For subsets of {1..n} we have A088809, complement A085489.
The non-strict version is A237113, complement A236912.
The non-binary complement is A237667, ranks A364532.
Allowing re-used parts gives A363226, non-strict A363225.
The non-binary version is A364272, non-strict A237668.
The complement is A364533, non-binary A364349.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]]!={}&]],{n,0,30}]

A365069 Number of subsets of {1..n} containing n and some element equal to the sum of two or more distinct other elements. A variation of non-binary sum-full subsets without re-usable elements.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 41, 88, 201, 418, 892, 1838, 3798, 7716, 15740
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365071. The binary case is A364756. Allowing elements to be re-used gives A365070. A version for partitions (but not requiring n) is A237668.

Examples

			The subset {2,4,6} has 6 = 4 + 2 so is counted under a(6).
The subset {1,2,4,7} has 7 = 4 + 2 + 1 so is counted under a(7).
The subset {1,4,5,8} has 5 = 4 + 1 so is counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The complement w/ re-usable parts is A288728, first differences of A007865.
First differences of A364534.
The binary complement is A364755, first differences of A085489.
The binary version is A364756, first differences of A088809.
The version with re-usable parts is A365070, first differences of A093971.
The complement is counted by A365071, first differences of A151897.
A124506 counts nonnegative combination-free subsets, differences of A326083.
A365046 counts nonnegative combination-full subsets, differences of A364914.
Strict partitions: A116861, A364272, A364349, A364350, A364839, A364916.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#, {2,Length[#]}]]!={}&]],{n,0,10}]

Formula

a(n) = 2^(n-1) - A365070(n).
First differences of A364534.

A365071 Number of subsets of {1..n} containing n such that no element is a sum of distinct other elements. A variation of non-binary sum-free subsets without re-usable elements.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 15, 23, 40, 55, 94, 132, 210, 298, 476, 644, 1038, 1406, 2149, 2965, 4584, 6077, 9426, 12648, 19067, 25739, 38958, 51514, 78459, 104265, 155436, 208329, 312791, 411886, 620780, 823785, 1224414, 1631815, 2437015, 3217077, 4822991
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365069. The binary version is A364755, complement A364756. For re-usable parts we have A288728, complement A365070.

Examples

			The subset {1,3,4,6} has 4 = 1 + 3 so is not counted under a(6).
The subset {2,3,4,5,6} has 6 = 2 + 4 and 4 = 1 + 3 so is not counted under a(6).
The a(0) = 0 through a(6) = 15 subsets:
  .  {1}  {2}    {3}    {4}      {5}      {6}
          {1,2}  {1,3}  {1,4}    {1,5}    {1,6}
                 {2,3}  {2,4}    {2,5}    {2,6}
                        {3,4}    {3,5}    {3,6}
                        {1,2,4}  {4,5}    {4,6}
                        {2,3,4}  {1,2,5}  {5,6}
                                 {1,3,5}  {1,2,6}
                                 {2,4,5}  {1,3,6}
                                 {3,4,5}  {1,4,6}
                                          {2,3,6}
                                          {2,5,6}
                                          {3,4,6}
                                          {3,5,6}
                                          {4,5,6}
                                          {3,4,5,6}
		

Crossrefs

First differences of A151897.
The version with re-usable parts is A288728 first differences of A007865.
The binary version is A364755, first differences of A085489.
The binary complement is A364756, first differences of A088809.
The complement is counted by A365069, first differences of A364534.
The complement w/ re-usable parts is A365070, first differences of A093971.
A108917 counts knapsack partitions, strict A275972.
A124506 counts combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#,{2,Length[#]}]]=={}&]], {n,0,10}]

Formula

a(n) + A365069(n) = 2^(n-1).
First differences of A151897.

Extensions

a(14) onwards added (using A151897) by Andrew Howroyd, Jan 13 2024

A367107 Numbers m not divisible by prime(bigomega(m)). Heinz numbers of integer partitions whose length is not a part (counted by A229816).

Original entry on oeis.org

3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Nov 21 2023

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Crossrefs

Partitions of this type are counted by A229816.
The complement is A325761, counted by A002865.
If length is not a subset-sum: A367225, count A367213, complement A367224.
A005117 ranks strict integer partitions, counted by A000009.
A066208 ranks partitions into odd parts, also counted by A000009.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A237667 counts sum-free partitions, ranks A364531.
A237668 counts sum-full partitions, sum-free A364532.

Programs

  • Mathematica
    Select[Range[2,100],!Divisible[#,Prime[PrimeOmega[#]]]&]
Previous Showing 11-16 of 16 results.