cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A365380 Number of subsets of {1..n} that cannot be linearly combined using nonnegative coefficients to obtain n.

Original entry on oeis.org

1, 1, 2, 2, 6, 4, 16, 12, 32, 32, 104, 48, 256, 208, 448, 448, 1568, 896, 3840, 2368, 6912, 7680, 22912, 10752, 50688, 44800, 104448, 88064, 324096, 165888, 780288, 541696, 1458176, 1519616, 4044800, 2220032, 10838016, 8744960, 20250624, 16433152, 62267392, 34865152
Offset: 1

Views

Author

Gus Wiseman, Sep 04 2023

Keywords

Examples

			The set {4,5,6} cannot be linearly combined to obtain 7 so is counted under a(7), but we have 8 = 2*4 + 0*5 + 0*6, so it is not counted under a(8).
The a(1) = 1 through a(8) = 12 subsets:
  {}  {}  {}   {}   {}     {}     {}       {}
          {2}  {3}  {2}    {4}    {2}      {3}
                    {3}    {5}    {3}      {5}
                    {4}    {4,5}  {4}      {6}
                    {2,4}         {5}      {7}
                    {3,4}         {6}      {3,6}
                                  {2,4}    {3,7}
                                  {2,6}    {5,6}
                                  {3,5}    {5,7}
                                  {3,6}    {6,7}
                                  {4,5}    {3,6,7}
                                  {4,6}    {5,6,7}
                                  {5,6}
                                  {2,4,6}
                                  {3,5,6}
                                  {4,5,6}
		

Crossrefs

The complement is counted by A365073, without n A365542.
The binary complement is A365314, positive A365315.
The binary case is A365320, positive A365321.
For positive coefficients we have A365322, complement A088314.
A124506 appears to count combination-free subsets, differences of A326083.
A179822 counts sum-closed subsets, first differences of A326080.
A288728 counts binary sum-free subsets, first differences of A007865.
A365046 counts combination-full subsets, first differences of A364914.
A365071 counts sum-free subsets, first differences of A151897.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,0,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n-1]],combs[n,#]=={}&]],{n,5}]

Formula

a(n) = 2^n - A365073(n).

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 04 2023

A365045 Number of subsets of {1..n} containing n such that no element can be written as a positive linear combination of the others.

Original entry on oeis.org

0, 1, 1, 2, 4, 11, 23, 53, 111, 235, 483, 988, 1998, 4036, 8114, 16289, 32645, 65389, 130887, 261923, 524014, 1048251, 2096753, 4193832, 8388034, 16776544, 33553622, 67107919, 134216597, 268434140, 536869355, 1073740012, 2147481511, 4294964834, 8589931700
Offset: 0

Views

Author

Gus Wiseman, Aug 24 2023

Keywords

Comments

Also subsets of {1..n} containing n whose greatest element cannot be written as a positive linear combination of the others.

Examples

			The subset {3,4,10} has 10 = 2*3 + 1*4 so is not counted under a(10).
The a(0) = 0 through a(5) = 11 subsets:
  .  {1}  {2}  {3}    {4}        {5}
               {2,3}  {3,4}      {2,5}
                      {2,3,4}    {3,5}
                      {1,2,3,4}  {4,5}
                                 {2,4,5}
                                 {3,4,5}
                                 {1,2,3,5}
                                 {1,2,4,5}
                                 {1,3,4,5}
                                 {2,3,4,5}
                                 {1,2,3,4,5}
		

Crossrefs

The nonempty case is A070880.
The nonnegative version is A124506, first differences of A326083.
The binary version is A288728, first differences of A007865.
A subclass is A341507.
The complement is counted by A365042, first differences of A365043.
First differences of A365044.
The nonnegative complement is A365046, first differences of A364914.
The binary complement is A365070, first differences of A093971.
Without re-usable parts we have A365071, first differences of A151897.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&And@@Table[combp[#[[k]],Union[Delete[#,k]]]=={},{k,Length[#]}]&]],{n,0,10}]

Formula

a(n) = A070880(n) + 1 for n > 0.

A365044 Number of subsets of {1..n} whose greatest element cannot be written as a (strictly) positive linear combination of the others.

Original entry on oeis.org

1, 2, 3, 5, 9, 20, 43, 96, 207, 442, 925, 1913, 3911, 7947, 16061, 32350, 64995, 130384, 261271, 523194, 1047208, 2095459, 4192212, 8386044, 16774078, 33550622, 67104244, 134212163, 268428760, 536862900, 1073732255, 2147472267, 4294953778, 8589918612, 17179850312
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

Sets of this type may be called "positive combination-free".
Also subsets of {1..n} such that no element can be written as a (strictly) positive linear combination of the others.

Examples

			The subset S = {3,5,6,8} has 6 = 2*3 + 0*5 + 0*8 and 8 = 1*3 + 1*5 + 0*6 but neither of these is strictly positive, so S is counted under a(8).
The a(0) = 1 through a(5) = 20 subsets:
  {}  {}   {}   {}     {}         {}
      {1}  {1}  {1}    {1}        {1}
           {2}  {2}    {2}        {2}
                {3}    {3}        {3}
                {2,3}  {4}        {4}
                       {2,3}      {5}
                       {3,4}      {2,3}
                       {2,3,4}    {2,5}
                       {1,2,3,4}  {3,4}
                                  {3,5}
                                  {4,5}
                                  {2,3,4}
                                  {2,4,5}
                                  {3,4,5}
                                  {1,2,3,4}
                                  {1,2,3,5}
                                  {1,2,4,5}
                                  {1,3,4,5}
                                  {2,3,4,5}
                                  {1,2,3,4,5}
		

Crossrefs

The binary version is A007865, first differences A288728.
The binary complement is A093971, first differences A365070.
Without re-usable parts we have A151897, first differences A365071.
The nonnegative version is A326083, first differences A124506.
A subclass is A341507.
The nonnegative complement is A364914, first differences A365046.
The complement is counted by A365043, first differences A365042.
First differences are A365045.
A085489 and A364755 count subsets w/o the sum of two distinct elements.
A088809 and A364756 count subsets with the sum of two distinct elements.
A364350 counts combination-free strict partitions, complement A364839.
A364913 counts combination-full partitions.

Programs

  • Mathematica
    combp[n_,y_]:=With[{s=Table[{k,i},{k,y},{i,1,Floor[n/k]}]},Select[Tuples[s],Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]],And@@Table[combp[Last[#],Union[Most[#]]]=={},{k,Length[#]}]&]],{n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A365044(n):
        mlist = tuple({tuple(sorted(p.keys())) for p in partitions(m,k=m-1)} for m in range(1,n+1))
        return n+1+sum(1 for k in range(2,n+1) for w in combinations(range(1,n+1),k) if w[:-1] not in mlist[w[-1]-1]) # Chai Wah Wu, Nov 20 2023

Formula

a(n) = 2^n - A365043(n).

Extensions

a(15)-a(34) from Chai Wah Wu, Nov 20 2023

A365069 Number of subsets of {1..n} containing n and some element equal to the sum of two or more distinct other elements. A variation of non-binary sum-full subsets without re-usable elements.

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 17, 41, 88, 201, 418, 892, 1838, 3798, 7716, 15740
Offset: 0

Views

Author

Gus Wiseman, Aug 26 2023

Keywords

Comments

The complement is counted by A365071. The binary case is A364756. Allowing elements to be re-used gives A365070. A version for partitions (but not requiring n) is A237668.

Examples

			The subset {2,4,6} has 6 = 4 + 2 so is counted under a(6).
The subset {1,2,4,7} has 7 = 4 + 2 + 1 so is counted under a(7).
The subset {1,4,5,8} has 5 = 4 + 1 so is counted under a(8).
The a(0) = 0 through a(6) = 17 subsets:
  .  .  .  {1,2,3}  {1,3,4}    {1,4,5}      {1,5,6}
                    {1,2,3,4}  {2,3,5}      {2,4,6}
                               {1,2,3,5}    {1,2,3,6}
                               {1,2,4,5}    {1,2,4,6}
                               {1,3,4,5}    {1,2,5,6}
                               {2,3,4,5}    {1,3,4,6}
                               {1,2,3,4,5}  {1,3,5,6}
                                            {1,4,5,6}
                                            {2,3,4,6}
                                            {2,3,5,6}
                                            {2,4,5,6}
                                            {1,2,3,4,6}
                                            {1,2,3,5,6}
                                            {1,2,4,5,6}
                                            {1,3,4,5,6}
                                            {2,3,4,5,6}
                                            {1,2,3,4,5,6}
		

Crossrefs

The complement w/ re-usable parts is A288728, first differences of A007865.
First differences of A364534.
The binary complement is A364755, first differences of A085489.
The binary version is A364756, first differences of A088809.
The version with re-usable parts is A365070, first differences of A093971.
The complement is counted by A365071, first differences of A151897.
A124506 counts nonnegative combination-free subsets, differences of A326083.
A365046 counts nonnegative combination-full subsets, differences of A364914.
Strict partitions: A116861, A364272, A364349, A364350, A364839, A364916.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[#,n]&&Intersection[#, Total/@Subsets[#, {2,Length[#]}]]!={}&]],{n,0,10}]

Formula

a(n) = 2^(n-1) - A365070(n).
First differences of A364534.
Showing 1-4 of 4 results.