cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A367016 G.f. satisfies A(x) = 1 + x*A(x)^4*(1 - x).

Original entry on oeis.org

1, 1, 3, 14, 78, 475, 3057, 20446, 140702, 989789, 7085635, 51451482, 378049810, 2805616460, 20999408480, 158337719608, 1201585477436, 9170328295222, 70339328959266, 541953619822062, 4192560258116202, 32552250308843605, 253583917423039079
Offset: 0

Views

Author

Seiichi Manyama, Nov 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k)*binomial(k, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(k,n-k) * A002293(k).

A378786 G.f. A(x) satisfies A(x) = 1 + x * (1+x)^2 * A(x)^4.

Original entry on oeis.org

1, 1, 6, 39, 296, 2435, 21138, 190603, 1767968, 16761424, 161697576, 1582171216, 15664531716, 156637712953, 1579664567130, 16048129755157, 164085811289360, 1687224436103842, 17436287104620980, 181001686332329224, 1886522317836670988, 19734386503541838083
Offset: 0

Views

Author

Seiichi Manyama, Dec 07 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=1, s=2, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(2*k,n-k)/(4*k+1) = Sum_{k=0..n} binomial(2*k,n-k) * A002293(k).

A381937 G.f. A(x) satisfies A(x) = (1 + x) * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 2, 6, 35, 240, 1805, 14386, 119365, 1020136, 8918423, 79380514, 716911887, 6553219720, 60513355786, 563648995020, 5289485238552, 49963186247220, 474655663418546, 4532279676629700, 43473774550929628, 418706702628897708, 4047555977981218963
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(k+1, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(k+1,n-k)/(4*k+1).
a(n) = A365178(n) + A365178(n-1).

A382885 G.f. A(x) satisfies A(x) = 1/( 1 - x * (1+x) * A(x) )^3.

Original entry on oeis.org

1, 3, 18, 121, 900, 7110, 58598, 498153, 4336533, 38463732, 346368351, 3158325168, 29102914959, 270582713670, 2535191045652, 23913087584045, 226892934532149, 2164080724942155, 20737076963936828, 199542537271568802, 1927347504059464995, 18679645863925666721
Offset: 0

Views

Author

Seiichi Manyama, Apr 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n, r=3, s=1, t=4, u=0) = r*sum(k=0, n, binomial(t*k+u*(n-k)+r, k)*binomial(s*k, n-k)/(t*k+u*(n-k)+r));

Formula

G.f. A(x) satisfies A(x) = ( 1 + x * (1+x) * A(x)^(4/3) )^3.
If g.f. satisfies A(x) = ( 1 + x*A(x)^(t/r) * (1 + x*A(x)^(u/r))^s )^r, then a(n) = r * Sum_{k=0..n} binomial(t*k+u*(n-k)+r,k) * binomial(s*k,n-k)/(t*k+u*(n-k)+r).
G.f.: B(x)^3, where B(x) is the g.f. of A365178.
Previous Showing 11-14 of 14 results.