cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A370473 G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 - A(x) + A(x)^2 - A(x)^3 + A(x)^4).

Original entry on oeis.org

1, 1, 4, 25, 185, 1501, 12914, 115723, 1068505, 10094770, 97117624, 948181724, 9370734322, 93562986440, 942385174150, 9563720899515, 97696642766654, 1003789888620166, 10366477185870960, 107548800153957745, 1120374840689934195, 11714707429579539268
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(n+5*k/2+1/2, n)/(2*n+5*k+1));

Formula

G.f. A(x) satisfies:
(1) A(x)^2 = 1 + x * A(x)^2 * (1 + A(x)^5).
(2) A(x) = sqrt(B(x)) where B(x) is the g.f. of A366401.
a(n) = Sum_{k=0..n} binomial(n,k) * binomial(n+5*k/2+1/2,n)/(2*n+5*k+1).

A370475 G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(5/2)).

Original entry on oeis.org

1, 2, 11, 86, 785, 7818, 82360, 902394, 10178528, 117402240, 1378372807, 16417823232, 197903156219, 2409689022268, 29593911665705, 366158474520010, 4559848894822462, 57109656154370922, 718896822713092457, 9090475112572839810, 115417175337050727590
Offset: 0

Views

Author

Seiichi Manyama, Mar 31 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n, k)*binomial(3*n/2+5*k/2+1, n)/(3*n/2+5*k/2+1));

Formula

a(n) = Sum{k=0..n} binomial(n,k) * binomial(3*n/2+5*k/2+1,n)/(3*n/2+5*k/2+1).
Previous Showing 11-12 of 12 results.