cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A366633 Number of divisors of 7^n-1.

Original entry on oeis.org

4, 10, 12, 36, 8, 60, 16, 84, 64, 80, 16, 864, 8, 160, 96, 384, 16, 640, 16, 1536, 96, 160, 32, 16128, 32, 80, 1280, 1152, 32, 3840, 32, 1728, 384, 80, 128, 18432, 32, 160, 192, 14336, 32, 7680, 16, 4608, 2048, 160, 16, 147456, 256, 640, 768, 1152, 32, 25600
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=8 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 168061}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[tau](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[0, 7^Range[100]-1]
  • PARI
    a(n) = numdiv(7^n-1);

Formula

a(n) = sigma0(7^n-1) = A000005(A024075(n)).

A366634 Sum of the divisors of 7^n-1.

Original entry on oeis.org

12, 124, 780, 7812, 33624, 354640, 1704240, 18929096, 97036800, 800520192, 3958188480, 56928231360, 193778020824, 1830926384640, 11181115146240, 115997032277280, 465294239722800, 5175558387507200, 22852200371636160, 287850454432579584, 1318081737957660000
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Examples

			a(5)=33624 because 7^5-1 has divisors {1, 2, 3, 6, 2801, 5602, 8403, 16806}.
		

Crossrefs

Programs

  • Maple
    a:=n->numtheory[sigma](7^n-1):
    seq(a(n), n=1..100);
  • Mathematica
    DivisorSigma[1, 7^Range[30]-1]

Formula

a(n) = sigma(7^n-1) = A000203(A024075(n)).

A366639 a(n) = phi(7^n+1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 4, 20, 168, 1200, 7600, 43200, 407680, 2712832, 19707408, 112560000, 945677920, 6768230400, 47530457728, 271289229120, 2096760960000, 16569393144832, 116315256993600, 597938524646400, 5699431359135360, 38890647857280000, 270061302781670400
Offset: 0

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

Programs

  • Mathematica
    EulerPhi[7^Range[0,21] + 1] (* Paul F. Marrero Romero, Nov 05 2023 *)
  • PARI
    {a(n) = eulerphi(7^n+1)}

Formula

a(n) = A000010(A034491(n)). - Paul F. Marrero Romero, Nov 06 2023
Previous Showing 11-13 of 13 results.