cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A370241 Expansion of Sum_{n>=0} Product_{k=0..n} (x^k*(1+x)^(n-k) + x^(n-k)*(1+x)^k).

Original entry on oeis.org

3, 6, 15, 36, 98, 258, 677, 1830, 5006, 13340, 35215, 95702, 264851, 717760, 1894473, 5031846, 13788409, 38375030, 105005017, 279236168, 734728565, 1967715202, 5416631023, 15061949148, 41271428388, 110250824636, 289840310574, 766277436248, 2072808806434, 5730605191220
Offset: 0

Views

Author

Paul D. Hanna, Feb 13 2024

Keywords

Examples

			G.f.: A(x) = 3 + 6*x + 15*x^2 + 36*x^3 + 98*x^4 + 258*x^5 + 677*x^6 + 1830*x^7 + 5006*x^8 + 13340*x^9 + 35215*x^10 + 95702*x^11 + 264851*x^12 + ...
where
A(x) = (1 + 1) + ((1+x) + x)*(x + (1+x)) + ((1+x)^2 + x^2)*(x*(1+x) + x*(1+x))*(x^2 + (1+x)^2) + ((1+x)^3 + x^3)*(x*(1+x)^2 + x^2*(1+x))*(x^2*(1+x) + x*(1+x)^2)*(x^3 + (1+x)^3) + ((1+x)^4 + x^4)*(x*(1+x)^3 + x^3*(1+x))*(x^2*(1+x)^2 + x^2*(1+x)^2)*(x^3*(1+x) + x*(1+x)^3)*(x^4 + (1+x)^4) + ...
SPECIFIC VALUES.
A(1/5) = 5.4216712041652671338354486...
A(1/4) = Sum_{n>=0} A369676(n)/4^(n*(n+1)) = 7.1437109433775269577074586...
A(1/3) = Sum_{n>=0} A369675(n)/3^(n*(n+1)) = 19.589361786409617133535937...
A(-1/3) = 1.9743720303058511269360725...
Although the g.f. A(x) diverges at x = -1/2, it may be evaluated formally as
A(-1/2) = Sum_{n>=0} (-1)^n * 2 / 16^(n^2) = 1.875030517549021169...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n+1, prod(k=0, m, x^k*(1+x)^(m-k) + x^(m-k)*(1+x)^k +x*O(x^n)) )); polcoeff(A, n)}
    for(n=0, 40, print1(a(n), ", "))

Formula

G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas.
(1) A(x) = Sum_{n>=0} Product_{k=0..n} (x^k*(1+x)^(n-k) + x^(n-k)*(1+x)^k).
(2) A(x) = Sum_{n>=0} (1+x)^(n*(n+1)) * Product_{k=0..n} ((x/(1+x))^k + (x/(1+x))^(n-k)).
(3) A(x) = Sum_{n>=0} x^(n*(n+1)/2) * (1+x)^(n*(n+1)/2) * Product_{k=0..n} (1 + (x/(1+x))^(n-2*k)).
(4) A(x/(1-x)) = Sum_{n>=0} 1/(1-x)^(n*(n+1)) * Product_{k=0..n} (x^k + x^(n-k)).

A370014 a(n) = Product_{k=0..n} (2^k + 4^(n-k)).

Original entry on oeis.org

2, 15, 510, 84240, 69204960, 284844384000, 5892302096179200, 613826012249992396800, 322003239202740297793536000, 850857971372280730568060043264000, 11334246342025651164429104024534384640000, 760681528794595483313206024106936185273712640000
Offset: 0

Views

Author

Paul D. Hanna, Feb 08 2024

Keywords

Comments

For p > 1, q > 1, limit_{n->oo} ( Product_{k=0..n} (p^k + q^(n-k)) )^(1/n^2) = exp((1/2) * (log(p)^2 + log(p)*log(q) + log(q)^2) / log(p*q)); formula due to Vaclav Kotesovec (cf. A369680). For this sequence, p = 2 and q = 4.

Examples

			a(0) = (1 + 1) = 2;
a(1) = (1 + 4)*(2 + 1) = 15;
a(2) = (1 + 4^2)*(2 + 4)*(2^2 + 1) = 510;
a(3) = (1 + 4^3)*(2 + 4^2)*(2^2 + 4)*(2^3 + 1) = 84240;
a(4) = (1 + 4^4)*(2 + 4^3)*(2^2 + 4^2)*(2^3 + 4)*(2^4 + 1) = 69204960;
a(5) = (1 + 4^5)*(2 + 4^4)*(2^2 + 4^3)*(2^3 + 4^2)*(2^4 + 4)*(2^5 + 1) = 284844384000;
...
RELATED SERIES.
Sum_{n>=0} Product_{k=0..n} (1/2^k + 1/4^(n-k)) = 2 + 15/8 + 510/8^3 + 84240/8^6 + 69204960/8^10 + 284844384000/8^15 + 5892302096179200/8^21 + ... + a(n)/8^(n*(n+1)/2) + ... = 5.2656633442570372661094196585300212123165...
		

Crossrefs

Programs

  • PARI
    {a(n) = prod(k=0, n, 2^k + 4^(n-k))}
    for(n=0, 15, print1(a(n), ", "))

Formula

a(n) = Product_{k=0..n} (2^k + 4^(n-k)).
a(n) = 8^(n*(n+1)/2) * Product_{k=0..n} (1/2^k + 1/4^(n-k)).
a(n) = 4^(n*(n+1)/2) * Product_{k=0..n} (1 + 2^n/8^k).
a(n) = 2^(n*(n+1)/2) * Product_{k=0..n} (1 + 4^n/8^k).
a(n) = 2^(-n*(n+1)/2) * Product_{k=0..n} (2^n + 8^k).
a(n) = 4^(-n*(n+1)/2) * Product_{k=0..n} (4^n + 8^k).
Limit_{n->oo} a(n)^(1/n^2) = 2^(7/6) = 2.244924096618745962867... [using the formula by Vaclav Kotesovec given in the comments section].
Previous Showing 11-12 of 12 results.