cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A047776 Number of chiral pairs of asymmetric dissectable polyhedra with n tetrahedral cells (type A).

Original entry on oeis.org

0, 0, 0, 0, 2, 11, 71, 370, 2005, 10682, 58167, 320116, 1789210, 10121965, 57933469, 334919626, 1953800059, 11489466014, 68053583772, 405713887061, 2433000197471, 14668527134167, 88869448492895, 540834097467624, 3304961431043989, 20273201718862728, 124798671079300720, 770762029389852807
Offset: 1

Views

Author

Keywords

Comments

One of 17 different symmetry types comprising A007173 and A027610 and one of 7 for A371350. Also the number of tetrahedral clusters or polyominoes of the regular tiling with Schläfli symbol {3,3,oo}, both asymmetric (type A) with n tetrahedral cells. The order of the symmetry group is 1. Each member of a chiral pair is a reflection but not a rotation of the other. - Robert A. Russell, Mar 31 2024

Crossrefs

Cf. A007173 (oriented), A027610 (unoriented), A371350 (chiral), A001764 (rooted), A047775 (type B), A047774 (type C). A047773 (type D), A047762 (type E), A047760 (type F), A047758 (type G), A047754 (type H), A047753 (type I), A047752 (type J), A047751 (type K), A047771 (type L), A047769 (type M), A047766 (type N|O), A047765 (type P), A047764 (type Q).

Programs

  • Mathematica
    Table[If[n < 5, 0, Binomial[3 n, 2 n + 2]/(3 n (n - 1))
        - If[OddQ[n], Binomial[3 n/2 - 1/2, n + 1] 3/(n - 1),
         7 Binomial[3 n/2, n + 1]/(3 n)]
        - Switch[Mod[n, 3], 1, Binomial[n - 1, 2 n/3 + 1/3]/(n - 1), 2,
         Binomial[n - 1, 2 n/3 + 2/3]/(n - 2), _, 0]
        + Switch[Mod[n, 4], 1, Binomial[3 n/4 - 3/4, n/2 + 1/2] 2/(3 (n - 1))
          + Binomial[3 n/4 + 1/4, n/2 + 3/2] 4/(n - 1) +
          Binomial[3 n/4 - 3/4, n/2 + 1/2] 4/(n + 3), 2,
         Binomial[3 n/4 - 1/2, n/2 + 1] 8/(n - 2), 3,
         Binomial[3 n/4 - 1/4, n/2 + 3/2] 12/(n - 3), 0,
         Binomial[3 n/4 - 1, n/2 + 1] 12/(n - 4)] +
        Switch[Mod[n, 6], 1, Binomial[n/2 - 1/2, n/3 + 2/3] 6/(n - 1), 2,
         Binomial[n/2 - 1, n/3 + 1/3] 4/(n - 2) +
          Binomial[n/2, n/3 + 4/3] 6/(n - 2) +
          Binomial[n/2 - 1, n/3 + 1/3] 6/(n + 4), 4,
         Binomial[n/2 - 1, n/3 + 2/3] 12/(n - 4), 5,
         Binomial[n/2 - 1/2, n/3 + 1/3] 9/(n + 4), _, 0] +
        Switch[Mod[n, 12], 2, -Binomial[n/4 - 1/2, n/6 + 2/3] 12/(n - 2), 5,
         Binomial[n/4 - 5/4, n/6 - 5/6] 2/(n + 1),
         8, -Binomial[n/4 - 1, n/6 - 1/3] 12/(n + 4), _, 0] -
        Switch[Mod[n, 24], 5, Binomial[n/8 - 5/8, n/12 - 5/12] 12/(n + 7), 17,
         Binomial[n/8 - 9/8, n/12 - 5/12] 24/(n + 7), , 0]]/2, {n, 1, 60}] (* _Robert A. Russell, Apr 09 2012 *)

Formula

From Robert A. Russell, Mar 31 2024: (Start)
a(n) = A001764(n)/(12(n+1)) - A047775(n)/2 - A047774(n)/3 - A047773(n)/6 - A047762(n)/2 - A047760(n)/4 - A047758(n)/4 - A047754(n)/4 - A047753(n)/8 - A047752(n)/12 - A047751(n)/24 - A047771(n)/2 - A047769(n)/2 - A047766(n)/6 - A047766(n)/6 - A047765(n)/4 - A047764(n)/12.
G.f.: (G(z^4) + G(z^6) - 2)/(2z) - z/3 + G(z)/6 - G(z)^2/12 + z*G(z)^4/24 - 7*G(z^2)/12 - 3z*G(z^2)^2/8 - z*G(z^3)/6 - z^2*G(z^3)^2/12 + G(z^4)/2 - z*G(z^4)/6 + (z*G(z^4)^2 + z^2*G(z^4)^2 + z*G(z^6))/2 + z^2*G(z^6)/12 + (z^2*G(z^6)^2 + z^4*G(z^6)^2 - z^2*G(z^12))/2 + z^5*G(z^12)/6 - (z^8*G(z^12)^2 + z^5*G(z^24) + z^17*G(z^24)^2)/2, where G(z) = 1 + z*G(z)^3 is the g.f. for A001764. (End)

A369474 Number of chiral pairs of polyominoes composed of n pentachoral cells of the hyperbolic regular tiling with Schläfli symbol {3,3,3,oo}.

Original entry on oeis.org

0, 0, 0, 0, 1, 10, 80, 611, 4602, 34791, 265606, 2054034, 16094883, 127693729, 1024649237, 8306343347, 67952829212, 560471786912, 4656785469564, 38948533963500, 327715193729107, 2772468576820531
Offset: 1

Views

Author

Robert A. Russell, Mar 20 2024

Keywords

Comments

Also number of chiral pairs of simplicial 4-clusters or stack polytopes with n pentachoral cells. Each member of a chiral pair is a reflection but not a rotation of the other. Some of the h(4,n) terms in the Hering article are in error, including the 6th, 8th and 9th.

Crossrefs

Cf. A007175 (oriented), A182322 (oriented), A182299 (achiral), A002293 (rooted), A371350 {3,3,oo}.
This is the half the difference of A007175 and A182299, both of which have Mathematica programs.

Formula

a(n) = A007175(n) - A182322(n) = (A007175(n) - A182299(n))/2 = A182322(n) - A182299(n).
a(n) = h(4,n) - H(4,n) in Table 8 of Hering link.
Previous Showing 11-12 of 12 results.