cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A373932 Number of compositions of 7*n-6 into parts 1 and 7.

Original entry on oeis.org

1, 3, 13, 66, 330, 1624, 7973, 39173, 192539, 946375, 4651541, 22862658, 112371609, 552314945, 2714670141, 13342810843, 65580931949, 322335276473, 1584302440665, 7786967198052, 38273537040452, 188117350476413, 924611109563490, 4544534046237850
Offset: 1

Views

Author

Seiichi Manyama, Jun 23 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n*HypergeometricPFQ[{1-n,(1+n)/6,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6}, {2/7, 3/7, 4/7, 5/7, 6/7, 8/7}, -6^6/7^7]; Array[a,24] (* Stefano Spezia, Jun 23 2024 *)
  • PARI
    a(n) = sum(k=0, n, binomial(n+6*k, n-1-k));

Formula

a(n) = A005709(7*n-6).
a(n) = Sum_{k=0..n} binomial(n+6*k,n-1-k).
a(n) = 8*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: x*(1-x)^5/((1-x)^7 - x).
a(n) = n*hypergeom([1-n,(1+n)/6,(2+n)/6, (3+n)/6, (4+n)/6, (5+n)/6, 1+n/6], [2/7, 3/7, 4/7, 5/7, 6/7, 8/7], -6^6/7^7). - Stefano Spezia, Jun 23 2024

A373890 Number of compositions of 8*n into parts 1 and 8.

Original entry on oeis.org

1, 2, 11, 64, 345, 1824, 9661, 51284, 272333, 1445995, 7677250, 40760798, 216412235, 1149004281, 6100444144, 32389272248, 171965334801, 913020717480, 4847528344990, 25737127996244, 136646907481155, 725503534206186, 3851937726561990, 20451208781128462
Offset: 0

Views

Author

Seiichi Manyama, Jun 22 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(n+7*k, n-k));

Formula

a(n) = A005710(8*n).
a(n) = Sum_{k=0..n} binomial(n+7*k,n-k).
a(n) = 9*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
G.f.: 1/(1 - x - x/(1 - x)^7).
Previous Showing 11-12 of 12 results.