cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-36 of 36 results.

A375135 Number of integer compositions of n whose leaders of maximal strictly increasing runs are not weakly decreasing.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 9, 25, 63, 152, 355, 809, 1804, 3963, 8590, 18423, 39161, 82620, 173198, 361101, 749326, 1548609, 3189132, 6547190, 13404613, 27378579, 55801506, 113517749, 230544752, 467519136, 946815630, 1915199736, 3869892105, 7812086380, 15756526347
Offset: 0

Views

Author

Gus Wiseman, Aug 06 2024

Keywords

Comments

The leaders of maximal strictly increasing runs in a sequence are obtained by splitting it into maximal strictly increasing subsequences and taking the first term of each.

Examples

			The composition y = (1,2,1,3,2,3) has strictly increasing runs ((1,2),(1,3),(2,3)), with leaders (1,1,2), which are not weakly decreasing, so y is counted under a(12).
The a(0) = 0 through a(8) = 25 compositions:
  .  .  .  .  .  (122)  (132)   (133)    (143)
                        (1122)  (142)    (152)
                        (1221)  (1132)   (233)
                                (1222)   (1133)
                                (1321)   (1142)
                                (2122)   (1223)
                                (11122)  (1232)
                                (11221)  (1322)
                                (12211)  (1331)
                                         (1421)
                                         (2132)
                                         (3122)
                                         (11132)
                                         (11222)
                                         (11321)
                                         (12122)
                                         (12212)
                                         (12221)
                                         (13211)
                                         (21122)
                                         (21221)
                                         (111122)
                                         (111221)
                                         (112211)
                                         (122111)
		

Crossrefs

For leaders of constant runs we have A056823.
For leaders of weakly increasing runs we have A374636, complement A189076?
The complement is counted by A374697.
For leaders of anti-runs we have A374699, complement A374682.
Other functional neighbors: A188920, A374764, A374765.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A335456 counts patterns matched by compositions.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], !GreaterEqual@@First/@Split[#,Less]&]],{n,0,15}]

Formula

a(n) = A011782(n) - A374697(n). - Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A374254 Numbers k such that the k-th composition in standard order is an anti-run and matches the patterns (1,2,1) or (2,1,2).

Original entry on oeis.org

13, 22, 25, 45, 49, 54, 76, 77, 82, 89, 97, 101, 102, 105, 108, 109, 141, 148, 150, 153, 162, 165, 166, 177, 178, 180, 182, 193, 197, 198, 204, 205, 209, 210, 216, 217, 269, 278, 280, 281, 297, 300, 301, 305, 306, 308, 310, 322, 325, 326, 332, 333, 353, 354
Offset: 1

Views

Author

Gus Wiseman, Jul 14 2024

Keywords

Comments

Such a composition cannot be strict.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The terms together with their standard compositions begin:
   13: (1,2,1)
   22: (2,1,2)
   25: (1,3,1)
   45: (2,1,2,1)
   49: (1,4,1)
   54: (1,2,1,2)
   76: (3,1,3)
   77: (3,1,2,1)
   82: (2,3,2)
   89: (2,1,3,1)
   97: (1,5,1)
  101: (1,3,2,1)
  102: (1,3,1,2)
  105: (1,2,3,1)
  108: (1,2,1,3)
  109: (1,2,1,2,1)
  141: (4,1,2,1)
  148: (3,2,3)
  150: (3,2,1,2)
  153: (3,1,3,1)
		

Crossrefs

Compositions of this type are counted by A285981.
Permutations of prime indices of this type are counted by A335460.
This is the anti-run complement case of A374249, counted by A274174.
This is the anti-run case of A374253, counted by A335548.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A025047 counts wiggly compositions, ranks A345167.
A066099 lists compositions in standard order.
A124767 counts runs in standard compositions, anti-runs A333381.
A233564 ranks strict compositions, counted by A032020.
A333755 counts compositions by number of runs.
A335454 counts patterns matched by standard compositions.
A335456 counts patterns matched by compositions.
A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices.
A335465 counts minimal patterns avoided by a standard composition.
- A335470 counts (1,2,1)-matching compositions, ranks A335466.
- A335471 counts (1,2,1)-avoiding compositions, ranks A335467.
- A335472 counts (2,1,2)-matching compositions, ranks A335468.
- A335473 counts (2,1,2)-avoiding compositions, ranks A335469.
A373948 encodes run-compression using compositions in standard order.
A373949 counts compositions by run-compressed sum, opposite A373951.
A373953 gives run-compressed sum of standard compositions, excess A373954.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[0,100],Length[Split[stc[#]]] == Length[stc[#]]&&!UnsameQ@@First/@Split[stc[#]]&]

Formula

Equals A333489 /\ A374253.

A375406 Number of integer compositions of n that match the dashed pattern 3-12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 4, 14, 41, 110, 278, 673, 1576, 3599, 8055, 17732, 38509, 82683, 175830, 370856, 776723, 1616945, 3348500, 6902905, 14174198, 29004911, 59175625, 120414435, 244468774, 495340191, 1001911626, 2023473267, 4081241473, 8222198324, 16548146045, 33276169507
Offset: 0

Views

Author

Gus Wiseman, Aug 22 2024

Keywords

Comments

First differs from the non-dashed version A335514 at a(9) = 41, A335514(9) = 42, due to the composition (3,1,3,2).
Also the number of integer compositions of n whose leaders of weakly decreasing runs are not weakly increasing. For example, the composition q = (1,1,2,1,2,2,1,3) has maximal weakly decreasing runs ((1,1),(2,1),(2,2,1),(3)), with leaders (1,2,2,3), which are weakly increasing, so q is not counted under a(13); also q does not match 3-12. On the other hand, the reverse is (3,1,2,2,1,2,1,1), with maximal weakly decreasing runs ((3,1),(2,2,1),(2,1,1)), with leaders (3,2,2), which are not weakly increasing, so it is counted under a(13); meanwhile it matches 3-12, as required.

Examples

			The a(0) = 0 through a(8) = 14 compositions:
  .  .  .  .  .  .  (312)  (412)   (413)
                           (1312)  (512)
                           (3112)  (1412)
                           (3121)  (2312)
                                   (3122)
                                   (3212)
                                   (4112)
                                   (4121)
                                   (11312)
                                   (13112)
                                   (13121)
                                   (31112)
                                   (31121)
                                   (31211)
		

Crossrefs

For leaders of identical runs we have A056823.
The complement is counted by A188900.
The non-dashed version is A335514, ranks A335479.
Ranks are positions of non-weakly increasing rows in A374740.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
Counting compositions by number of runs: A238130, A238279, A333755.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], !LessEqual@@First/@Split[#,GreaterEqual]&]],{n,0,15}]
    - or -
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], MatchQ[#,{_,z_,_,x_,y_,_}/;x
    				

Formula

a(n>0) = 2^(n-1) - A188900(n).

A376263 Number of strict integer compositions of n whose leaders of increasing runs are increasing.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 6, 8, 11, 18, 21, 30, 38, 52, 77, 96, 126, 167, 217, 278, 402, 488, 647, 822, 1073, 1340, 1747, 2324, 2890, 3695, 4690, 5924, 7469, 9407, 11718, 15405, 18794, 23777, 29507, 37188, 45720, 57404, 70358, 87596, 110672, 135329, 167018, 206761, 254200, 311920
Offset: 0

Views

Author

Gus Wiseman, Sep 18 2024

Keywords

Comments

The leaders of increasing runs of a sequence are obtained by splitting it into maximal increasing subsequences and taking the first term of each.

Examples

			The a(1) = 1 through a(9) = 11 compositions:
 (1) (2) (3)   (4)   (5)   (6)     (7)     (8)     (9)
         (1,2) (1,3) (1,4) (1,5)   (1,6)   (1,7)   (1,8)
                     (2,3) (2,4)   (2,5)   (2,6)   (2,7)
                           (1,2,3) (3,4)   (3,5)   (3,6)
                           (1,3,2) (1,2,4) (1,2,5) (4,5)
                                   (1,4,2) (1,3,4) (1,2,6)
                                           (1,4,3) (1,3,5)
                                           (1,5,2) (1,5,3)
                                                   (1,6,2)
                                                   (2,3,4)
                                                   (2,4,3)
		

Crossrefs

For less-greater or greater-less we have A294617.
This is a strict case of A374688, weak version A374635.
The strict less-greater version is A374689, weak version A189076.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions, strict A032020.
A238130, A238279, A333755 count compositions by number of runs.
A373949 counts compositions by run-compressed sum, opposite A373951.
A374700 counts compositions by sum of leaders of strictly increasing runs.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], UnsameQ@@#&&Less@@First/@Split[#,Less]&]],{n,0,15}]
  • PARI
    \\ here Q(n) gives n-th row of A008289.
    Q(n)={Vecrev(polcoef(prod(k=1, n, 1 + y*x^k, 1 + O(x*x^n)), n)/y)}
    a(n)={if(n==0, 1, my(r=Q(n), s=Vec(serlaplace(exp(exp(x+O(x^#r))- 1)))); sum(k=1, #r, r[k]*s[k]))} \\ Andrew Howroyd, Sep 18 2024

Formula

a(n) = Sum_{k>=1} A008289(n,k)*A000110(k-1) for n > 0. - Andrew Howroyd, Sep 18 2024

Extensions

a(26) onwards from Andrew Howroyd, Sep 18 2024

A373955 Numbers k such that the k-th integer composition in standard order contains two adjacent ones and no other runs.

Original entry on oeis.org

3, 11, 14, 19, 27, 28, 29, 35, 46, 51, 56, 57, 67, 75, 78, 83, 91, 92, 93, 99, 110, 112, 113, 114, 116, 118, 131, 139, 142, 155, 156, 157, 163, 179, 184, 185, 195, 203, 206, 211, 219, 220, 221, 224, 225, 226, 229, 230, 232, 233, 236, 237, 259, 267, 270, 275
Offset: 1

Views

Author

Gus Wiseman, Jun 29 2024

Keywords

Comments

Also numbers k such that the excess compression of the k-th integer composition in standard order is 1.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
postn of 1 in

Examples

			The terms and corresponding compositions begin:
    3: (1,1)
   11: (2,1,1)
   14: (1,1,2)
   19: (3,1,1)
   27: (1,2,1,1)
   28: (1,1,3)
   29: (1,1,2,1)
   35: (4,1,1)
   46: (2,1,1,2)
   51: (1,3,1,1)
   56: (1,1,4)
   57: (1,1,3,1)
   67: (5,1,1)
   75: (3,2,1,1)
   78: (3,1,1,2)
   83: (2,3,1,1)
   91: (2,1,2,1,1)
   92: (2,1,1,3)
   93: (2,1,1,2,1)
   99: (1,4,1,1)
		

Crossrefs

These compositions are counted by A373950.
Positions of ones in A373954.
A003242 counts compressed compositions (or anti-runs).
A114901 counts compositions with no isolated parts.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A240085 counts compositions with no unique parts.
A333755 counts compositions by compressed length.
A373948 encodes compression using compositions in standard order.
A373949 counts compositions by compression-sum.
A373953 gives compression-sum of standard compositions.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],Total[stc[#]] == Total[First/@Split[stc[#]]]+1&]

A374255 Sum of prime factors of n (with multiplicity) minus the greatest possible sum of run-compression of a permutation of the prime factors of n.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 4, 3, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 2, 5, 0, 6, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 4, 7, 0, 0, 0, 0, 3, 0, 2, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 9, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2024

Keywords

Comments

Contains no ones.
We define the run-compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, run-compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has run-compression (1,2,1).

Examples

			The prime factors of 96 are {2,2,2,2,2,3}, with sum 13, and we have permutations such as (2,2,2,2,3,2), with run-compression (2,3,2), with sum 7, so a(96) = 13 - 7 = 6.
		

Crossrefs

Positions of first appearances are A280286.
For least instead of greatest sum of run-compression we have A280292.
Positions of zeros are A335433 (separable).
Positions of positive terms are A335448 (inseparable).
For prime indices instead of factors we have A374248.
This is an opposite version of A374250, for prime indices A373956.
A001221 counts distinct prime factors, A001222 with multiplicity.
A003242 counts run-compressed compositions, i.e., anti-runs.
A007947 (squarefree kernel) represents run-compression of multisets.
A008480 counts permutations of prime factors.
A027746 lists prime factors, row-sums A001414.
A027748 is run-compression of prime factors, row-sums A008472.
A056239 adds up prime indices, row sums of A112798.
A116861 counts partitions by sum of run-compression.
A304038 is run-compression of prime indices, row-sums A066328.
A373949 counts compositions by sum of run-compression, opposite A373951.
A373957 gives greatest number of runs in a permutation of prime factors.
A374251 run-compresses standard compositions, sum A373953, rank A373948.
A374252 counts permutations of prime factors by number of runs.

Programs

  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    Table[Total[prifacs[n]]-Max@@(Total[First/@Split[#]]& /@ Permutations[prifacs[n]]),{n,100}]

Formula

a(n) = A001414(n) - A374250(n).
Previous Showing 31-36 of 36 results.