cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A374764 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 23, 40, 69, 118, 199, 333, 553, 911, 1492, 2428, 3928, 6323, 10129, 16151, 25646, 40560, 63905, 100332, 156995, 244877, 380803, 590479, 913100, 1408309, 2166671, 3325445, 5092283, 7780751, 11863546, 18052080, 27415291, 41556849, 62879053, 94975305, 143213145
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.
Also the number of ways to choose a strict integer partition of each part of an integer composition of n (A304969) such that the maxima are weakly increasing [but weakly decreasing works too]. The strictly increasing version is A374762.

Examples

			The composition (1,1,2,1) has strictly decreasing runs ((1),(1),(2,1)) with leaders (1,1,2) so is counted under a(5).
The composition (1,2,1,1) has strictly decreasing runs ((1),(2,1),(1)) with leaders (1,2,1) so is not counted under a(5).
The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (112)   (41)
                        (121)   (113)
                        (1111)  (122)
                                (131)
                                (212)
                                (221)
                                (1112)
                                (1121)
                                (11111)
		

Crossrefs

For partitions instead of compositions we have A034296.
For strictly increasing leaders we have A374688.
The opposite version is A374697.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of anti-runs we have A374681.
- For leaders of weakly increasing runs we have A374635.
- For leaders of strictly increasing runs we have A374690.
- For leaders of weakly decreasing runs we have A188900.
Other types of run-leaders (instead of weakly increasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For weakly decreasing leaders we have A374765.
- For strictly decreasing leaders we have A374763.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A335548 counts non-contiguous compositions, ranks A374253.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],LessEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    seq(n) = Vec(1/prod(k=1, n, 1 - x^k*prod(j=1, min(n-k,k-1), 1 + x^j, 1 + O(x^(n-k+1))))) \\ Andrew Howroyd, Jul 31 2024

Formula

G.f.: 1/(Product_{k>=1} (1 - x^k*Product_{j=1..k-1} (1 + x^j))). - Andrew Howroyd, Jul 31 2024

Extensions

a(24) onwards from Andrew Howroyd, Jul 31 2024

A374765 Number of integer compositions of n whose leaders of strictly decreasing runs are weakly decreasing.

Original entry on oeis.org

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 141, 225, 357, 565, 891, 1399, 2191, 3420, 5321, 8256, 12774, 19711, 30339, 46584, 71359, 109066, 166340, 253163, 384539, 582972, 882166, 1332538, 2009377, 3024969, 4546562, 6822926, 10223632, 15297051, 22855872, 34103117
Offset: 0

Views

Author

Gus Wiseman, Jul 30 2024

Keywords

Comments

The leaders of strictly decreasing runs in a sequence are obtained by splitting it into maximal strictly decreasing subsequences and taking the first term of each.

Examples

			The composition (3,1,2,2,1) has strictly decreasing runs ((3,1),(2),(2,1)), with leaders (3,2,2), so is counted under a(9).
The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (21)   (22)    (32)     (33)
                 (111)  (31)    (41)     (42)
                        (211)   (212)    (51)
                        (1111)  (221)    (222)
                                (311)    (312)
                                (2111)   (321)
                                (11111)  (411)
                                         (2121)
                                         (2211)
                                         (3111)
                                         (21111)
                                         (111111)
		

Crossrefs

The opposite version is A374690.
Other types of runs (instead of strictly decreasing):
- For leaders of identical runs we have A000041.
- For leaders of weakly increasing runs we appear to have A189076.
- For leaders of anti-runs we have A374682.
- For leaders of strictly increasing runs we have A374697.
- For leaders of weakly decreasing runs we have A374747.
Other types of run-leaders (instead of weakly decreasing):
- For identical leaders we have A374760, ranks A374759.
- For distinct leaders we have A374761, ranks A374767.
- For strictly increasing leaders we have A374762.
- For strictly decreasing leaders we have A374763.
- For weakly increasing leaders we have A374764.
A003242 counts anti-run compositions, ranks A333489.
A011782 counts compositions.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373949 counts compositions by run-compressed sum, opposite A373951.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],GreaterEqual@@First/@Split[#,Greater]&]],{n,0,15}]
  • PARI
    dfs(m, r, u) = 1 + sum(s=r, min(m, u), dfs(m-s, s, s)*x^s + sum(t=1, min(s-1, m-s), dfs(m-s-t, t, s)*x^(s+t)*prod(i=t+1, s-1, 1+x^i)));
    lista(nn) = Vec(dfs(nn, 1, nn) + O(x^(1+nn))); \\ Jinyuan Wang, Feb 13 2025

Extensions

More terms from Jinyuan Wang, Feb 13 2025

A375396 Numbers not divisible by the square of any prime factor except (possibly) the least. Hooklike numbers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2024

Keywords

Comments

Also numbers k such that the minima of the maximal anti-runs in the weakly increasing sequence of prime factors of k (with multiplicity) are identical. Here, an anti-run is a sequence with no adjacent equal parts, and the minima of the maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each. Note the prime factors can alternatively be taken in weakly decreasing order.
The complement is a superset of A036785 = products of a squarefree number and a prime power.
The asymptotic density of this sequence is (1/zeta(2)) * (1 + Sum_{p prime} (1/(p^2-p)) / Product_{primes q <= p} (1 + 1/q)) = 0.884855661165... . - Amiram Eldar, Oct 26 2024

Examples

			The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs {{2},{2,3,5},{5}}, with minima (2,2,5), so 300 is not in the sequence.
		

Crossrefs

The complement is a superset of A036785.
For maxima instead of minima we have A065200, counted by A034296.
The complement for maxima is A065201, counted by A239955.
Partitions of this type are counted by A115029.
A version for compositions is A374519, counted by A374517.
Also positions of identical rows in A375128, sums A374706, ranks A375400.
The complement is A375397, counted by A375405.
For distinct instead of identical minima we have A375398, counts A375134.
The complement for distinct minima is A375399, counted by A375404.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A011782 comps counts compositions.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.
See the formula section for the relationships with A005117, A028234.

Programs

  • Mathematica
    Select[Range[100],SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]
  • PARI
    is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) == e[1], 1); \\ Amiram Eldar, Oct 26 2024

Formula

{a(n)} = {k >= 1 : A028234(k) is in A005117}. - Peter Munn, May 09 2025

A375397 Numbers divisible by the square of some prime factor other than the least. Non-hooklike numbers.

Original entry on oeis.org

18, 36, 50, 54, 72, 75, 90, 98, 100, 108, 126, 144, 147, 150, 162, 180, 196, 198, 200, 216, 225, 234, 242, 245, 250, 252, 270, 288, 294, 300, 306, 324, 338, 342, 350, 360, 363, 375, 378, 392, 396, 400, 414, 432, 441, 450, 468, 484, 486, 490, 500, 504, 507, 522
Offset: 1

Views

Author

Gus Wiseman, Aug 16 2024

Keywords

Comments

Contains no squarefree numbers A005117 or prime powers A000961, but some perfect powers A131605.
Also numbers k such that the minima of the maximal anti-runs in the weakly increasing sequence of prime factors of k (with multiplicity) are not identical. Here, an anti-run is a sequence with no adjacent equal parts, and the minima of the maximal anti-runs in a sequence are obtained by splitting it into maximal anti-run subsequences and taking the least term of each. Note the prime factors can alternatively be taken in weakly decreasing order.
Includes all terms of A036785 = non-products of a squarefree number and a prime power.
The asymptotic density of this sequence is 1 - (1/zeta(2)) * (1 + Sum_{p prime} (1/(p^2-p)) / Product_{primes q <= p} (1 + 1/q)) = 0.11514433883... . - Amiram Eldar, Oct 26 2024

Examples

			The prime factors of 300 are {2,2,3,5,5}, with maximal anti-runs ((2),(2,3,5),(5)), with minima (2,2,5), so 300 is in the sequence.
The terms together with their prime indices begin:
    18: {1,2,2}
    36: {1,1,2,2}
    50: {1,3,3}
    54: {1,2,2,2}
    72: {1,1,1,2,2}
    75: {2,3,3}
    90: {1,2,2,3}
    98: {1,4,4}
   100: {1,1,3,3}
   108: {1,1,2,2,2}
   126: {1,2,2,4}
   144: {1,1,1,1,2,2}
		

Crossrefs

A superset of A036785.
The complement for maxima is A065200, counted by A034296.
For maxima instead of minima we have A065201, counted by A239955.
A version for compositions is A374520, counted by A374640.
Also positions of non-constant rows in A375128, sums A374706, ranks A375400.
The complement is A375396, counted by A115029.
The complement for distinct minima is A375398, counted by A375134.
For distinct instead of identical minima we have A375399, counts A375404.
Partitions of this type are counted by A375405.
A000041 counts integer partitions, strict A000009.
A003242 counts anti-run compositions, ranks A333489.
A number's prime factors (A027746, reverse A238689) have sum A001414, min A020639, max A006530.
A number's prime indices (A112798, reverse A296150) have sum A056239, min A055396, max A061395.
Both have length A001222, distinct A001221.

Programs

  • Mathematica
    Select[Range[100],!SameQ@@Min /@ Split[Flatten[ConstantArray@@@FactorInteger[#]],UnsameQ]&]
  • PARI
    is(k) = if(k > 1, my(e = factor(k)[, 2]); vecprod(e) > e[1], 0); \\ Amiram Eldar, Oct 26 2024

Extensions

Name edited by Peter Munn, May 08 2025
Previous Showing 21-24 of 24 results.