cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 27 results. Next

A378972 Second differences of the strict partition numbers A000009.

Original entry on oeis.org

0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, 3, 2, 3, 4, 3, 4, 6, 4, 6, 8, 6, 9, 10, 9, 12, 14, 13, 16, 19, 18, 22, 26, 24, 30, 34, 34, 40, 45, 46, 53, 60, 62, 70, 79, 82, 93, 104, 108, 122, 136, 142, 160, 176, 186, 208, 228, 243, 268
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			The strict partition numbers begin (A000009):
  1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 15, 18, 22, 27, 32, 38, ...
with differences (A087897 without first term):
  0, 0, 1, 0, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 5, 6, 8, 8, 10, 12, ...
with differences (a(n)):
  0, 1, -1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 2, 0, 2, 2, 1, 2, ...
		

Crossrefs

For primes we have A036263.
The version for partitions is A053445.
For composites we have A073445.
For squarefree numbers we have A376590.
For nonsquarefree numbers we have A376593.
For powers of primes (inclusive) we have A376596.
For non powers of primes (inclusive) we have A376599.
Second row of A378622. See also:
- A293467 gives first column (up to sign).
- A377285 gives position of first zero in each row.
- A378970 gives row-sums.
- A378971 gives absolute value row-sums.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    Differences[Table[PartitionsQ[n],{n,0,100}],2]

A376560 Points of upward concavity in the sequence of perfect-powers (A001597). Positives of A376559.

Original entry on oeis.org

1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, 35, 36, 37, 38, 41, 42, 43, 44, 46, 47, 48, 49, 50, 53, 54, 55, 57, 58, 60, 61, 62, 63, 64, 65, 67, 68, 69, 72, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are positive.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, upward concavity is negative curvature.

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with positive positions (A376560):
  1, 3, 4, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 22, 23, 26, 27, 28, 31, 32, 33, 34, ...
		

Crossrefs

The version for A000002 is A022297, complement A025505. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258025.
These are positions of positive terms in A376559.
For downward concavity we have A376561 (probably the complement).
A001597 lists the perfect-powers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    S:= {1,seq(seq(i^j,j=2..floor(log[i](N))),i=2..isqrt(N))}:
    L:= sort(convert(S,list)):
    DL:= L[2..-1]-L[1..-2]:
    D2L:= DL[2..-1]-DL[1..-2]:
    select(i -> D2L[i]>0, [$1..nops(D2L)]); # Robert Israel, Dec 01 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],1]

A376654 Sorted positions of first appearances in the second differences of consecutive prime-powers exclusive (A246655).

Original entry on oeis.org

3, 4, 9, 11, 17, 24, 44, 46, 47, 59, 67, 68, 70, 79, 117, 120, 177, 178, 198, 205, 206, 215, 243, 244, 303, 324, 326, 401, 465, 483, 604, 800, 879, 938, 1032, 1054, 1076, 1233, 1280, 1720, 1889, 1890, 1905, 1939, 1959, 1961, 2256, 2289, 2409, 2879, 3149
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2024

Keywords

Examples

			The prime-powers exclusive (A246655) are:
  2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, ...
with first differences (A057820 except first term) :
  1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, 6, 2, 3, 3, ...
with first differences (A376596 except first term):
  0, 0, 1, -1, 0, 1, 0, 1, -2, 1, 2, -2, 0, 0, 0, -1, 4, -1, -2, 2, -2, 2, 2, -4, ...
with first appearances (A376654):
  1, 3, 4, 9, 11, 17, 24, 44, 46, 47, 59, 67, 68, 70, 79, 117, 120, 177, 178, 198, ...
		

Crossrefs

For first differences we have A376340.
These are the sorted positions of first appearances in A376596 except first term.
The inclusive version is a(n) + 1 = A376653(n), except first term.
For squarefree instead of prime-power we have A376655.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.
For prime-powers inclusive: A057820 (first differences), A376597 (inflections and undulations), A376598 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376599 (non-prime-power).

Programs

  • Mathematica
    q=Differences[Select[Range[1000],PrimePowerQ[#]&],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

A377781 First differences of A065514(n) = greatest number < prime(n) that is 1 or a prime-power.

Original entry on oeis.org

1, 2, 1, 4, 2, 5, 1, 2, 8, 2, 3, 5, 4, 2, 6, 4, 6, 5, 3, 4, 2, 8, 2, 6, 8, 4, 2, 4, 2, 16, 3, 3, 6, 2, 10, 2, 6, 6, 6, 4, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2, 4, 6, 4, 13, 1, 6, 6, 2, 6, 4, 8, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 8, 6, 6, 6, 4, 6, 8, 4, 8, 10, 2, 10
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2024

Keywords

Comments

Note 1 is a power of a prime but not a prime-power.

Crossrefs

Differences of A065514, which is the restriction of A031218 (differences A377782).
The opposite is A377703 (restriction of A000015), differences of A345531.
The opposite for nonsquarefree is A377784, differences of A377783.
For nonsquarefree we have A378034, differences of A378032 (restriction of A378033).
The opposite for squarefree is A378037, differences of A112926 (restriction of A067535).
For squarefree we have A378038, differences of A112925 (restriction of A070321).
A000040 lists the primes, differences A001223.
A000961 and A246655 list the prime-powers, differences A057820.
A024619 lists the non-prime-powers, differences A375735, seconds A376599.
A361102 lists the non-powers of primes, differences A375708.
Prime-powers between primes:
- A053607 primes
- A080101 count (exclusive)
- A304521 by bits
- A366833 count
- A377057 positive
- A377286 zero
- A377287 one
- A377288 two

Programs

  • Mathematica
    Differences[Table[NestWhile[#-1&,Prime[n]-1,#>1&&!PrimePowerQ[#]&],{n,100}]]

A376600 Inflection or undulation points in the sequence of non-prime-powers inclusive (A024619).

Original entry on oeis.org

2, 7, 9, 10, 11, 14, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 39, 41, 43, 44, 45, 47, 48, 50, 51, 52, 55, 56, 57, 58, 59, 62, 64, 66, 68, 70, 73, 74, 75, 76, 77, 80, 86, 87, 88, 90, 92, 93, 94, 95, 96, 97, 98, 100, 102, 103, 104, 107, 108, 109, 112, 114, 116
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376599) are zero.
Inclusive means 1 is a prime-power but not a non-prime-power. For the exclusive version, add 1 to all terms.

Examples

			The non-prime-powers inclusive are (A024619):
  6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, ...
with first differences (A375735):
  4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, ...
with first differences (A376599):
  -2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, ...
with zeros at (A376600):
  2, 7, 9, 10, 11, 14, 15, 18, 20, 22, 24, 26, 29, 30, 31, 33, 39, 41, 43, 44, ...
		

Crossrefs

For first differences we had A375735, ones A375713(n)-1.
These are the zeros of A376599.
The complement is A376601.
A000961 lists prime-powers inclusive, exclusive A246655.
A001597 lists perfect-powers, complement A007916.
A024619/A361102 list non-prime-powers inclusive.
A321346/A321378 count integer partitions into non-prime-powers, factorizations A322452.
For non-prime-powers: A375735/A375708 (first differences), A376599 (second differences), A376601 (nonzero curvature).
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power).

Programs

  • Mathematica
    Join@@Position[Differences[Select[Range[100], !(#==1||PrimePowerQ[#])&],2],0]

A376655 Sorted positions of first appearances in the second differences of consecutive squarefree numbers (A005117).

Original entry on oeis.org

1, 2, 3, 5, 6, 30, 61, 150, 514, 1025, 5153, 13390, 13391, 131964, 502651, 664312, 4387185, 5392318, 20613826
Offset: 1

Views

Author

Gus Wiseman, Oct 07 2024

Keywords

Comments

Warning: Do not confuse with A246655 (prime-powers exclusive).

Examples

			The squarefree numbers (A005117) are:
  1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, ...
with first differences (A076259):
  1, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 1, 1, 2, 1, 1, 2, ...
with first differences (A376590):
  0, 1, -1, 0, 2, -2, 1, -1, 0, 1, 0, 0, -1, 0, 2, 0, -2, 0, 1, -1, 0, 1, -1, 0, ...
with sorted first appearances at (A376655):
  1, 2, 3, 5, 6, 30, 61, 150, 514, 1025, 5153, 13390, 13391, ...
		

Crossrefs

For first differences we had A376311 (first appearances in A076259).
These are the sorted positions of first appearances in A376590.
For prime-powers instead of squarefree numbers we have A376653/A376654.
For primes instead of squarefree numbers we have A376656.
A000040 lists the prime numbers, differences A001223.
A005117 lists squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
For second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376593 (nonsquarefree), A376596 (prime-power inclusive), A376599 (non-prime-power inclusive).
For squarefree: A376591 (inflections and undulations), A376592 (nonzero curvature).

Programs

  • Mathematica
    q=Differences[Select[Range[1000],SquareFreeQ],2];
    Select[Range[Length[q]],!MemberQ[Take[q,#-1],q[[#]]]&]

Extensions

a(14)-a(19) from Chai Wah Wu, Oct 07 2024

A376561 Points of downward concavity in the sequence of perfect-powers (A001597).

Original entry on oeis.org

2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, 71, 74, 87, 94, 101, 102, 108, 110, 112, 113, 119, 127, 135, 143, 144, 156, 157, 160, 161, 169, 178, 187, 196, 205, 206, 215, 224, 225, 234, 244, 263, 273, 283, 284, 293, 294, 304
Offset: 1

Views

Author

Gus Wiseman, Sep 30 2024

Keywords

Comments

These are points at which the second differences are negative.
Perfect-powers (A001597) are numbers with a proper integer root.
Note that, for some sources, downward concavity is positive curvature.
From Robert Israel, Oct 31 2024: (Start)
The first case of two consecutive numbers in the sequence is a(4) = 13 and a(5) = 14.
The first case of three consecutive numbers is a(293) = 2735, a(294) = 2736, a(295) = 2737.
The first case of four consecutive numbers, if it exists, involves a(k) with k > 69755. (End)

Examples

			The perfect powers (A001597) are:
  1, 4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196, ...
with first differences (A053289):
  3, 4, 1, 7, 9, 2, 5, 4, 13, 15, 17, 19, 21, 4, 3, 16, 25, 27, 20, 9, 18, 13, 33, ...
with first differences (A376559):
  1, -3, 6, 2, -7, 3, -1, 9, 2, 2, 2, 2, -17, -1, 13, 9, 2, -7, -11, 9, -5, 20, 2, ...
with negative positions (A376561):
  2, 5, 7, 13, 14, 18, 19, 21, 24, 25, 29, 30, 39, 40, 45, 51, 52, 56, 59, 66, 70, ...
		

Crossrefs

The version for A000002 is A025505, complement A022297. See also A054354, A376604.
For first differences we have A053289, union A023055, firsts A376268, A376519.
For primes instead of perfect-powers we have A258026.
For upward concavity we have A376560 (probably the complement).
A000961 lists the prime-powers inclusive, exclusive A246655.
A001597 lists the perfect-powers.
A007916 lists the non-perfect-powers.
A112344 counts partitions into perfect-powers, factorizations A294068.
A333254 gives run-lengths of differences between consecutive primes.
Second differences: A036263 (prime), A073445 (composite), A376559 (perfect-power), A376562 (non-perfect-power), A376590 (squarefree), A376593 (nonsquarefree), A376596 (prime-power), A376599 (non-prime-power).

Programs

  • Maple
    N:= 10^6: # to use perfect powers <= N
    P:= {seq(seq(i^m,i=2..floor(N^(1/m))), m=2 .. ilog2(N))}: nP:= nops(P):
    P:= sort(convert(P,list)):
    select(i -> 2*P[i] > P[i-1]+P[i+1], [$2..nP-1]); # Robert Israel, Oct 31 2024
  • Mathematica
    perpowQ[n_]:=n==1||GCD@@FactorInteger[n][[All,2]]>1;
    Join@@Position[Sign[Differences[Select[Range[1000],perpowQ],2]],-1]

A376588 Inflection and undulation points in the sequence of non-perfect-powers (A007916).

Original entry on oeis.org

3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2024

Keywords

Comments

These are points at which the second differences (A376562) are zero.
Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
with zeros at (A376588):
  3, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 21, 22, 25, 28, 29, 30, 31, 32, 33, ...
		

Crossrefs

The version for A000002 is empty.
For first differences we had A375706, ones A375740, complement A375714.
Positions of zeros in A376562, complement A376589.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A305631 counts integer partitions into non-perfect-powers, factorizations A322452.
A333254 gives run-lengths of differences between consecutive primes.
For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376589 (nonzero curvature).
For second differences: A064113 (prime), A376602 (composite), {} (perfect-power), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power inclusive), A376600 (non-prime-power inclusive).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Differences[Select[Range[100],radQ],2],0]

A376589 Points of nonzero curvature in the sequence of non-perfect-powers (A007916).

Original entry on oeis.org

1, 2, 4, 5, 10, 11, 18, 20, 23, 24, 26, 27, 38, 39, 52, 53, 68, 69, 86, 87, 106, 107, 109, 110, 111, 112, 126, 127, 150, 151, 176, 177, 195, 196, 203, 204, 220, 221, 232, 233, 264, 265, 298, 299, 316, 317, 333, 334, 371, 372, 411, 412, 453, 454, 480, 481, 496
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2024

Keywords

Comments

These are points at which the second differences (A376562) are nonzero.
Non-perfect-powers (A007916) are numbers without a proper integer root.

Examples

			The non-perfect powers (A007916) are:
  2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 26, 28, ...
with first differences (A375706):
  1, 2, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, ...
with first differences (A376562):
  1, -1, 0, 2, -2, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0, 0, 1, -1, 0, ...
with nonzeros at (A376589):
  1, 2, 4, 5, 10, 11, 18, 20, 23, 24, 26, 27, 38, 39, 52, 53, 68, 69, 86, 87, ...
		

Crossrefs

For first differences we had A375706, ones A375740, complement A375714.
These are the positions of nonzeros in A376562, complement A376588.
Runs of non-perfect-powers:
- length: A375702 = A053289(n+1) - 1
- first: A375703 (same as A216765 with 2 exceptions)
- last: A375704 (same as A045542 with 8 removed)
- sum: A375705
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers, complement A001597.
A305631 counts integer partitions into non-perfect-powers, factorizations A322452.
For non-perfect-powers: A375706 (first differences), A376562 (second differences), A376588 (inflection and undulation points).
For second differences: A064113 (prime), A376602 (composite), A376591 (squarefree), A376594 (nonsquarefree), A376597 (prime-power), A376600 (non-prime-power).

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    Join@@Position[Sign[Differences[Select[Range[1000],radQ],2]],1|-1]

A376601 Points of nonzero curvature in the sequence of non-prime-powers inclusive (A024619).

Original entry on oeis.org

1, 3, 4, 5, 6, 8, 12, 13, 16, 17, 19, 21, 23, 25, 27, 28, 32, 34, 35, 36, 37, 38, 40, 42, 46, 49, 53, 54, 60, 61, 63, 65, 67, 69, 71, 72, 78, 79, 81, 82, 83, 84, 85, 89, 91, 99, 101, 105, 106, 110, 111, 113, 115, 117, 118, 122, 124, 132, 134, 136, 138, 148
Offset: 1

Views

Author

Gus Wiseman, Oct 05 2024

Keywords

Comments

These are points at which the second differences (A376599) are nonzero.
Inclusive means 1 is a prime-power but not a non-prime-power. For the exclusive version, subtract 1 and shift left.

Examples

			The non-prime-powers inclusive (A024619) are:
  6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 40, ...
with first differences (A375735):
  4, 2, 2, 1, 3, 2, 1, 1, 2, 2, 2, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, ...
with first differences (A376599):
  -2, 0, -1, 2, -1, -1, 0, 1, 0, 0, 0, 1, -2, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, ...
with nonzero terms (A376601) at:
  1, 3, 4, 5, 6, 8, 12, 13, 16, 17, 19, 21, 23, 25, 27, 28, 32, 34, 35, 36, 37, ...
		

Crossrefs

For first differences we had A375735, ones A375713(n) - 1.
These are the nonzeros of A376599.
The complement is A376600.
A000961 lists prime-powers inclusive, exclusive A246655.
A007916 lists non-perfect-powers.
A024619/A361102 list non-prime-powers inclusive.
A057820 gives first differences of prime-powers inclusive.
A321346/A321378 count integer partitions into non-prime-powers, factorizations A322452.
For non-prime-powers: A375735/A375708 (first differences), A376599 (second differences), A376600 (inflections and undulations).
For nonzero curvature: A333214 (prime), A376603 (composite), A376588 (non-perfect-power), A376592 (squarefree), A376595 (nonsquarefree), A376598 (prime-power).

Programs

  • Mathematica
    Join@@Position[Sign[Differences[Select[Range[100], !(#==1||PrimePowerQ[#])&],2]],1|-1]
Previous Showing 11-20 of 27 results. Next