cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 42 results. Next

A385064 Numbers k such that (31^k - 3^k)/28 is prime.

Original entry on oeis.org

3, 23, 53, 661, 8923, 9721, 13807
Offset: 1

Views

Author

Robert Price, Jun 16 2025

Keywords

Comments

The definition implies that k must be a prime.
a(8) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(31^# - 3^#)/28] &]

A385244 Numbers k such that (33^k + 2^k)/35 is prime.

Original entry on oeis.org

47, 269, 2287, 5059
Offset: 1

Views

Author

Robert Price, Jul 28 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(33^# + 2^#)/35] &]

A385518 Numbers k such that (37^k - 3^k)/34 is prime.

Original entry on oeis.org

3, 137, 197, 2113, 4729, 11497
Offset: 1

Views

Author

Robert Price, Jul 01 2025

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(37^# - 3^#)/34] &]

A385680 Numbers k such that (40^k - 3^k)/37 is prime.

Original entry on oeis.org

2, 5, 1549, 4391
Offset: 1

Views

Author

Robert Price, Aug 04 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(40^# - 3^#)/37] &]

A385684 Numbers k such that (38^k - 3^k)/35 is prime.

Original entry on oeis.org

2, 3, 19, 101, 229, 1031, 2393, 3121, 4021
Offset: 1

Views

Author

Robert Price, Jul 06 2025

Keywords

Comments

The definition implies that k must be a prime.
a(10) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(38^# - 3^#)/35] &]

A385928 Numbers k such that (34^k - 3^k)/31 is prime.

Original entry on oeis.org

2, 337, 421, 79493
Offset: 1

Views

Author

Robert Price, Jul 12 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(34^# - 3^#)/31] &]

A385992 Numbers k such that (35^k - 3^k)/32 is prime.

Original entry on oeis.org

5, 31, 67, 73, 991, 2053, 7507, 34603
Offset: 1

Views

Author

Robert Price, Aug 11 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(35^# - 3^#)/32] &]

A386383 Numbers k such that (22^k + 3^k)/25 is prime.

Original entry on oeis.org

2617, 3739, 14207, 43789
Offset: 1

Views

Author

Robert Price, Aug 17 2025

Keywords

Comments

The definition implies that k must be a prime.
a(5) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(22^# + 3^#)/25] &]

A387390 Numbers k such that (28^k + 3^k)/31 is prime.

Original entry on oeis.org

3, 17, 443, 3907, 18911, 50929
Offset: 1

Views

Author

Robert Price, Aug 28 2025

Keywords

Comments

The definition implies that k must be a prime.
a(7) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(28^# + 3^#)/31] &]

A387392 Numbers k such that (29^k + 3^k)/32 is prime.

Original entry on oeis.org

11, 181, 229, 311, 701, 4493, 5233, 13879
Offset: 1

Views

Author

Robert Price, Aug 28 2025

Keywords

Comments

The definition implies that k must be a prime.
a(9) > 10^5.

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[10000]], PrimeQ[(29^# + 3^#)/32] &]
Previous Showing 31-40 of 42 results. Next