cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A377048 Antidiagonal-sums of the absolute value of the array A377046(n,k) = n-th term of k-th differences of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 12, 13, 22, 28, 31, 39, 64, 85, 132, 395, 1103, 2650, 5868, 12297, 24694, 47740, 88731, 157744, 265744, 418463, 605929, 805692, 1104513, 2396645, 8213998, 21761334, 50923517, 110270883, 225997492, 444193562, 844498084, 1561942458, 2819780451, 4973173841
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

These are the row-sums of the absolute value triangle version of A377046.

Examples

			The third antidiagonal of A377046 is (9, 1, -3), so a(3) = 13.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
For squarefree instead of nonsquarefree numbers we have A377040.
The non-absolute version is A377047.
For leading column we have A377049.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]

A378040 Union of A377783(n) = least nonsquarefree number > prime(n).

Original entry on oeis.org

4, 8, 12, 16, 18, 20, 24, 32, 40, 44, 48, 54, 60, 63, 68, 72, 75, 80, 84, 90, 98, 104, 108, 112, 116, 128, 132, 140, 150, 152, 160, 164, 168, 175, 180, 184, 192, 196, 198, 200, 212, 224, 228, 232, 234, 240, 242, 252, 260, 264, 270, 272, 279, 284, 294, 308, 312
Offset: 1

Views

Author

Gus Wiseman, Nov 20 2024

Keywords

Comments

Numbers k such that, if p is the greatest prime < k, all numbers from p to k (exclusive) are squarefree.

Crossrefs

For squarefree we have A112926 (diffs A378037), opposite A112925 (diffs A378038).
For prime-power instead of nonsquarefree we have A345531, differences A377703.
Union of A377783 (diffs A377784), restriction of A120327 (diffs A378039).
Nonsquarefree numbers not appearing are A378084, see also A378082, A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A070321 gives the greatest squarefree number up to n.
A071403(n) = A013928(prime(n)) counts squarefree numbers up to prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers up to prime(n).
Cf. A378034 (differences of A378032), restriction of A378036 (differences A378033).

Programs

  • Mathematica
    Union[Table[NestWhile[#+1&,Prime[n],SquareFreeQ],{n,100}]]
    lns[p_]:=Module[{k=p+1},While[SquareFreeQ[k],k++];k]; Table[lns[p],{p,Prime[Range[70]]}]//Union (* Harvey P. Dale, Jun 12 2025 *)

A377047 Antidiagonal-sums of the array A377046(n,k) = n-th term of k-th differences of nonsquarefree numbers (A013929).

Original entry on oeis.org

4, 12, 7, 22, 14, 17, 39, 0, 37, 112, -337, 1103, -2570, 5868, -12201, 24670, -47528, 88283, -155910, 259140, -393399, 512341, -456546, -191155, 2396639, -8213818, 21761218, -50922953, 110269343, -225991348, 444168748, -844390064, 1561482582, -2817844477
Offset: 1

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

These are the row-sums of the triangle-version of A377046.

Examples

			The third antidiagonal of A377046 is (9, 1, -3), so a(3) = 7.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
For squarefree instead of nonsquarefree numbers we have A377039.
The absolute value version is A377048.
For leading column we have A377049.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377050 Position of first appearance of zero in the n-th differences of the nonsquarefree numbers, or 0 if it does not appear.

Original entry on oeis.org

0, 0, 5, 11, 4, 129, 10, 89, 16, 161, 72, 77325, 71, 4870, 70, 253, 75, 737923, 166, 1648316, 165, 8753803, 164, 208366710, 163, 99489971, 162, 49493333, 161
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

If a(29) is not 0, then it is > 10^12. - Lucas A. Brown, Oct 25 2024

Examples

			The fourth differences of A013929 begin: -6, -2, 5, 0, -7, 9, -6, 6, -7, ... so a(4) = 4.
		

Crossrefs

The version for primes is A376678, noncomposites A376855, composites A377037.
For squarefree instead of nonsquarefree numbers we have A377042.
For antidiagonal-sums we have A377047, absolute A377048.
For leading column we have A377049.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],!SquareFreeQ[#]&],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(17)-a(28) from Lucas A. Brown, Oct 25 2024

A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
		

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree numbers we have A377041, nonsquarefree A377049.
This is the first column of the array A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For positions of first zeros we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A001597 lists perfect-powers, complement A007916.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    q=Select[Range[100],#==1||PrimePowerQ[#]&];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)

A377056 Antidiagonal-sums of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 3, 11, 2, 36, -27, 142, -207, 595, -1066, 2497, -4878, 10726, -22189, 48383, -103318, 224296, -480761, 1030299, -2186942, 4626313, -9740648, 20492711, -43109372, 90843475, -191769296, 405528200, -858373221, 1817311451, -3845483855, 8129033837
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 3.
		

Crossrefs

For primes we have A140119 or A376683, unsigned A376681 or A376684.
These are the antidiagonal-sums of A175804.
First column of the same array is A281425.
For composites we have A377034, unsigned A377035.
For squarefree numbers we have A377039, unsigned A377040.
For nonsquarefree numbers we have A377049, unsigned A377048.
For prime powers we have A377052, unsigned A377053.
The unsigned version is A378621.
The version for strict partitions is A378970 (row-sums of A378622), unsigned A378971.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=20;
    t=Table[Differences[PartitionsP/@Range[0,2nn],k],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377041 First term of the n-th differences of the squarefree numbers. Inverse zero-based binomial transform of A005117.

Original entry on oeis.org

1, 1, 0, 1, -3, 6, -8, 3, 22, -92, 252, -578, 1189, -2255, 3991, -6617, 10245, -14626, 18666, -19635, 12104, 13090, -69122, 171478, -332718, 552138, -798629, 982514, -901485, 116219, 2351842, -8715135, 23856206, -57926011, 130281064, -273804584, 535390333
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
This is the first column of A377038.
For nonsquarefree numbers we have A377049.
For prime-powers we have A377054.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377042 gives first position of 0 in each row of A377038.

Programs

  • Mathematica
    q=Select[Range[100],SquareFreeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A377036 First term of the n-th differences of the composite numbers. Inverse zero-based binomial transform of A002808.

Original entry on oeis.org

4, 2, 0, -1, 2, -2, 0, 4, -8, 8, 0, -16, 32, -32, -1, 78, -233, 687, -2363, 8160, -25670, 72352, -184451, 430937, -933087, 1888690, -3597221, 6479696, -11086920, 18096128, -28307626, 42644791, -62031001, 86466285, -110902034, 110907489, -52325, -483682930
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Crossrefs

The version for prime instead of composite is A007442.
For noncomposite numbers we have A030016.
This is the first column (n=1) of A377033.
For row-sums we have A377034, absolute version A377035.
First zero positions are A377037, cf. A376678, A376855, A377042, A377050, A377055.
For squarefree instead of composite we have A377041, nonsquarefree A377049.
For prime-power instead of composite we have A377054.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composite numbers, differences A073783, seconds A073445.
A008578 lists the noncomposites, differences A075526.
Cf: A018252, A065310, A065890, A140119, A173390, A333214, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]-1}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), ..., q(m)) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A378971 Antidiagonal-sums of absolute value of the array A378622(n,k) = n-th term of k-th differences of strict partition numbers (A000009).

Original entry on oeis.org

1, 1, 1, 5, 8, 18, 30, 47, 70, 110, 177, 309, 574, 1063, 1892, 3107, 4598, 6166, 8737, 20603, 62457, 149132, 314116, 614093, 1155968, 2176048, 4244322, 8753864, 19006756, 42472117, 95235017, 210396059, 453414950, 949510166, 1931941261, 3826650257, 7400745917
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal 4 of A378622 is (2, 0, -1, -2, -3), so a(4) = 8.
		

Crossrefs

For primes we have A376681 or A376684, signed version A140119 or A376683.
For composites we have A377035, signed version A377034.
For squarefree numbers we have A377040, signed version A377039.
For nonsquarefree numbers we have A377048, signed version A377049.
For prime powers we have A377053, signed version A377052.
For partition numbers we have A378621, signed version A377056.
Row-sums of the triangular form of A378622. See also:
- A175804 is the version for partitions.
- A293467 gives the first column (up to sign).
- A377285 gives position of first zero in each row.
The signed version is A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    t=Table[Take[Differences[PartitionsQ/@Range[0,2nn],k],nn],{k,0,nn}];
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]

A378621 Antidiagonal-sums of absolute value of the array A175804(n,k) = n-th term of k-th differences of partition numbers (A000041).

Original entry on oeis.org

1, 1, 4, 5, 11, 16, 36, 65, 142, 285, 595, 1210, 2497, 5134, 10726, 22637, 48383, 104066, 224296, 481985, 1030299, 2188912, 4626313, 9743750, 20492711, 43114180, 90843475, 191776658, 405528200, 858384333, 1817311451, 3845500427, 8129033837, 17162815092
Offset: 0

Views

Author

Gus Wiseman, Dec 14 2024

Keywords

Examples

			Antidiagonal i + j = 3 of A175804 is (3, 1, 0, -1), so a(3) = 5.
		

Crossrefs

These are the antidiagonal-sums of the absolute value of A175804.
First column of the same array is A281425.
For primes we have A376681 or A376684, signed A140119 or A376683.
For composites we have A377035, signed A377034.
For squarefree numbers we have A377040, signed A377039.
For nonsquarefree numbers we have A377048, signed A377049.
For prime powers we have A377053, signed A377052.
The signed version is A377056.
The corresponding array for strict partitions is A378622, see A293467, A377285, A378971, A378970.
A000009 counts strict integer partitions, differences A087897, A378972.
A000041 counts integer partitions, differences A002865, A053445.

Programs

  • Mathematica
    nn=30;
    q=Table[PartitionsP[n],{n,0,nn}];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[i+k]],{k,0,j}],{j,0,Length[q]/2},{i,Length[q]/2}]
    Total/@Abs/@Table[t[[j,i-j+1]],{i,nn/2},{j,i}]
Previous Showing 11-20 of 21 results. Next