cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A377046 Array read by downward antidiagonals where A(n,k) is the n-th term of the k-th differences of nonsquarefree numbers.

Original entry on oeis.org

4, 8, 4, 9, 1, -3, 12, 3, 2, 5, 16, 4, 1, -1, -6, 18, 2, -2, -3, -2, 4, 20, 2, 0, 2, 5, 7, 3, 24, 4, 2, 2, 0, -5, -12, -15, 25, 1, -3, -5, -7, -7, -2, 10, 25, 27, 2, 1, 4, 9, 16, 23, 25, 15, -10, 28, 1, -1, -2, -6, -15, -31, -54, -79, -94, -84, 32, 4, 3, 4, 6, 12, 27, 58, 112, 191, 285, 369
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Comments

Row k is the k-th differences of A013929.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ---------------------------------------------------------
  k=0:   4     8     9    12    16    18    20    24    25
  k=1:   4     1     3     4     2     2     4     1     2
  k=2:  -3     2     1    -2     0     2    -3     1    -1
  k=3:   5    -1    -3     2     2    -5     4    -2     4
  k=4:  -6    -2     5     0    -7     9    -6     6    -7
  k=5:   4     7    -5    -7    16   -15    12   -13    10
  k=6:   3   -12    -2    23   -31    27   -25    23   -13
  k=7: -15    10    25   -54    58   -52    48   -36    13
  k=8:  25    15   -79   112  -110   100   -84    49     1
  k=9: -10   -94   191  -222   210  -184   133   -48   -57
Triangle form:
   4
   8   4
   9   1  -3
  12   3   2   5
  16   4   1  -1  -6
  18   2  -2  -3  -2   4
  20   2   0   2   5   7   3
  24   4   2   2   0  -5 -12 -15
  25   1  -3  -5  -7  -7  -2  10  25
  27   2   1   4   9  16  23  25  15 -10
  28   1  -1  -2  -6 -15 -31 -54 -79 -94 -84
  32   4   3   4   6  12  27  58 112 191 285 369
		

Crossrefs

Initial rows: A013929, A078147, A376593.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
For squarefree numbers we have A377038, sums A377039, absolute A377040.
Triangle row-sums are A377047, absolute version A377048.
Column n = 1 is A377049, for squarefree A377041, for prime A007442 or A030016.
First position of 0 in each row is A377050.
For prime-power instead of nonsquarefree we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,SquareFreeQ[#]&]&,4,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A013929(i+k).

A377038 Array read by antidiagonals downward where A(n,k) is the n-th term of the k-th differences of the squarefree numbers.

Original entry on oeis.org

1, 2, 1, 3, 1, 0, 5, 2, 1, 1, 6, 1, -1, -2, -3, 7, 1, 0, 1, 3, 6, 10, 3, 2, 2, 1, -2, -8, 11, 1, -2, -4, -6, -7, -5, 3, 13, 2, 1, 3, 7, 13, 20, 25, 22, 14, 1, -1, -2, -5, -12, -25, -45, -70, -92, 15, 1, 0, 1, 3, 8, 20, 45, 90, 160, 252, 17, 2, 1, 1, 0, -3, -11, -31, -76, -166, -326, -578
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

Row n is the k-th differences of A005117 = the squarefree numbers.

Examples

			Array form:
        n=1:  n=2:  n=3:  n=4:  n=5:  n=6:  n=7:  n=8:  n=9:
  ----------------------------------------------------------
  k=0:   1     2     3     5     6     7    10    11    13
  k=1:   1     1     2     1     1     3     1     2     1
  k=2:   0     1    -1     0     2    -2     1    -1     0
  k=3:   1    -2     1     2    -4     3    -2     1     1
  k=4:  -3     3     1    -6     7    -5     3     0    -2
  k=5:   6    -2    -7    13   -12     8    -3    -2     3
  k=6:  -8    -5    20   -25    20   -11     1     5    -5
  k=7:   3    25   -45    45   -31    12     4   -10    10
  k=8:  22   -70    90   -76    43    -8   -14    20   -19
  k=9: -92   160  -166   119   -51    -6    34   -39    28
Triangle form:
   1
   2   1
   3   1   0
   5   2   1   1
   6   1  -1  -2  -3
   7   1   0   1   3   6
  10   3   2   2   1  -2  -8
  11   1  -2  -4  -6  -7  -5   3
  13   2   1   3   7  13  20  25  22
  14   1  -1  -2  -5 -12 -25 -45 -70 -92
  15   1   0   1   3   8  20  45  90 160 252
		

Crossrefs

Row k=0 is A005117.
Row k=1 is A076259.
Row k=2 is A376590.
The version for primes is A095195, noncomposites A376682, composites A377033.
A version for partitions is A175804, cf. A053445, A281425, A320590.
Triangle row-sums are A377039, absolute version A377040.
Column n = 1 is A377041, for primes A007442 or A030016.
First position of 0 in each row is A377042.
For nonsquarefree instead of squarefree numbers we have A377046.
For prime-powers instead of squarefree numbers we have A377051.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=9;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}]
    Table[t[[j,i-j+1]],{i,nn},{j,i}]

Formula

A(i,j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) A005117(i+k).

A377049 First term of the n-th differences of the nonsquarefree numbers. Inverse zero-based binomial transform of A013929.

Original entry on oeis.org

4, 4, -3, 5, -6, 4, 3, -15, 25, -10, -84, 369, -1067, 2610, -5824, 12246, -24622, 47577, -88233, 155962, -259086, 393455, -512281, 456609, 191219, -2396571, 8213890, -21761143, 50923029, -110269263, 225991429, -444168664, 844390152, -1561482492, 2817844569
Offset: 0

Views

Author

Gus Wiseman, Oct 19 2024

Keywords

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree instead of nonsquarefree numbers we have A377041.
For antidiagonal-sums we have A377047, absolute A377048.
For first position of 0 in each row we have A377050.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A073576 counts integer partitions into squarefree numbers, factorizations A050320.

Programs

  • Mathematica
    nn=20;
    Table[First[Differences[NestList[NestWhile[#+1&, #+1,SquareFreeQ[#]&]&,4,2*nn],k]],{k,0,nn}]
    With[{nsf=Select[Range[1000],!SquareFreeQ[#]&]},Table[Differences[nsf,n],{n,0,40}]][[;;,1]] (* Harvey P. Dale, Nov 28 2024 *)

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A377054 First term of the n-th differences of the powers of primes. Inverse zero-based binomial transform of A000961.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, -5, 15, -34, 63, -97, 115, -54, -251, 1184, -3536, 8736, -18993, 37009, -64545, 98442, -121393, 82008, 147432, -860818, 2710023, -7110594, 17077281, -38873146, 85085287, -179965647, 367885014, -725051280, 1372311999, -2481473550, 4257624252
Offset: 0

Views

Author

Gus Wiseman, Oct 22 2024

Keywords

Examples

			The sixth differences of A000961 begin: -5, 10, -9, 1, 6, -10, 16, -18, ..., so a(6) = -5.
		

Crossrefs

The version for primes is A007442, noncomposites A030016, composites A377036.
For squarefree numbers we have A377041, nonsquarefree A377049.
This is the first column of the array A377051.
For antidiagonal-sums we have A377052, absolute A377053.
For positions of first zeros we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A000961 lists the powers of primes, differences A057820.
A001597 lists perfect-powers, complement A007916.
A008578 lists the noncomposites, differences A075526.
A023893 and A023894 count integer partitions into prime-powers, factorizations A000688.

Programs

  • Mathematica
    q=Select[Range[100],#==1||PrimePowerQ[#]&];
    Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]/2}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), q(2), ...) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k)*binomial(j,k)*q(k)

A377040 Antidiagonal-sums of absolute value of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 4, 9, 13, 18, 28, 39, 106, 267, 595, 1212, 2286, 4041, 6720, 10497, 15387, 20914, 25894, 29377, 37980, 70785, 175737, 343806, 579751, 861934, 1162080, 1431880, 1688435, 2589533, 8731932, 23911101, 58109574, 130912573, 276067892, 543833014, 992784443
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Examples

			The fourth antidiagonal of A377038 is (6, 1, -1, -2, -3), so a(4) = 13.
		

Crossrefs

The version for primes is A376681, noncomposites A376684, composites A377035.
These are the antidiagonal-sums of the absolute value of A377038.
The non-absolute version is A377039.
For nonsquarefree numbers we have A377048, non-absolute A377047.
For prime-powers we have A377053, non-absolute A377052.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377041 gives first column of A377038, for primes A007442 or A030016.
A377042 gives first position of 0 in each row of A377038.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[Abs[t[[j,i-j+1]]],{i,nn},{j,i}]

A377039 Antidiagonal-sums of the array A377038(n,k) = n-th term of k-th differences of squarefree numbers (A005117).

Original entry on oeis.org

1, 3, 4, 9, 1, 18, 8, -9, 106, -237, 595, -1170, 2276, -3969, 6640, -10219, 14655, -18636, 19666, -12071, -13056, 69157, -171441, 332756, -552099, 798670, -982472, 901528, -116173, -2351795, 8715186, -23856153, 57926066, -130281007, 273804642, -535390274
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

These are row-sums of the triangle-version of A377038.

Examples

			The fourth antidiagonal of A377038 is (6,1,-1,-2,-3), so a(4) = 1.
		

Crossrefs

The version for primes is A140119, noncomposites A376683, composites A377034.
These are the antidiagonal-sums of A377038.
The absolute version is A377040.
For nonsquarefree numbers we have A377047.
For prime-powers we have A377052.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377041 gives first column of A377038, for primes A007442 or A030016.
A377042 gives first position of 0 in each row of A377038.

Programs

  • Mathematica
    nn=20;
    t=Table[Take[Differences[NestList[NestWhile[#+1&,#+1,!SquareFreeQ[#]&]&,1,2*nn],k],nn],{k,0,nn}];
    Total/@Table[t[[j,i-j+1]],{i,nn},{j,i}]

A377042 Position of first zero in the n-th differences of the squarefree numbers (A005117), or 0 if it does not appear.

Original entry on oeis.org

0, 0, 1, 11, 8, 57, 14, 11, 13, 1019, 44, 1250, 43, 2721, 42, 249522, 2840, 1989839, 2839, 3373774, 4933, 142715511, 42793, 435650856, 5266, 30119361, 104063, 454172978707, 100285, 434562125244, 2755089, 2409925829164, 2485612
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Comments

a(n) for n even appear to be smaller than a(n) for n odd. - Chai Wah Wu, Oct 19 2024
a(33) > 10^13, unless it is 0. - Lucas A. Brown, Nov 15 2024

Examples

			The fourth differences begin: -3, 3, 1, -6, 7, -5, 3, 0, -2, ... so a(4) = 8
		

Crossrefs

The version for primes is A376678, noncomposites A376855, composites A377037.
This is the first position of 0 in each row of A377038.
For nonsquarefree numbers we have A377050.
For prime-powers we have A377055.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, complement A013929 (differences A078147).
A073576 counts integer partitions into squarefree numbers, factorizations A050320.
A377039 gives antidiagonal-sums of A377038, absolute version A377040.
A377041 gives first column of A377038, for primes A007442 or A030016.

Programs

  • Mathematica
    nn=10000;
    u=Table[Differences[Select[Range[nn],SquareFreeQ],k],{k,2,16}];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    m=Table[Position[u[[k]],0][[1,1]],{k,mnrm[Union[First/@Position[u,0]]]}]

Extensions

a(15)-a(20) from Chai Wah Wu, Oct 19 2024
a(21)-a(32) from Lucas A. Brown, Nov 15 2024

A377036 First term of the n-th differences of the composite numbers. Inverse zero-based binomial transform of A002808.

Original entry on oeis.org

4, 2, 0, -1, 2, -2, 0, 4, -8, 8, 0, -16, 32, -32, -1, 78, -233, 687, -2363, 8160, -25670, 72352, -184451, 430937, -933087, 1888690, -3597221, 6479696, -11086920, 18096128, -28307626, 42644791, -62031001, 86466285, -110902034, 110907489, -52325, -483682930
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2024

Keywords

Crossrefs

The version for prime instead of composite is A007442.
For noncomposite numbers we have A030016.
This is the first column (n=1) of A377033.
For row-sums we have A377034, absolute version A377035.
First zero positions are A377037, cf. A376678, A376855, A377042, A377050, A377055.
For squarefree instead of composite we have A377041, nonsquarefree A377049.
For prime-power instead of composite we have A377054.
Other arrays of differences: A095195 (prime), A376682 (noncomposite), A377033 (composite), A377038 (squarefree), A377046 (nonsquarefree), A377051 (prime-power).
A000040 lists the primes, differences A001223, seconds A036263.
A002808 lists the composite numbers, differences A073783, seconds A073445.
A008578 lists the noncomposites, differences A075526.
Cf: A018252, A065310, A065890, A140119, A173390, A333214, A376602 (zero), A376603 (nonzero), A376651 (positive), A376652 (negative), A376680.

Programs

  • Mathematica
    q=Select[Range[100],CompositeQ];
    t=Table[Sum[(-1)^(j-k)*Binomial[j,k]*q[[1+k]],{k,0,j}],{j,0,Length[q]-1}]

Formula

The inverse zero-based binomial transform of a sequence (q(0), q(1), ..., q(m)) is the sequence p given by:
p(j) = sum_{k=0..j} (-1)^(j-k) binomial(j,k) q(k)

A379542 Second term of the n-th differences of the prime numbers.

Original entry on oeis.org

3, 2, 0, 2, -6, 14, -30, 62, -122, 220, -344, 412, -176, -944, 4112, -11414, 26254, -53724, 100710, -175034, 281660, -410896, 506846, -391550, -401486, 2962260, -9621128, 24977308, -57407998, 120867310, -236098336, 428880422, -719991244, 1096219280
Offset: 0

Views

Author

Gus Wiseman, Jan 12 2025

Keywords

Comments

Also the inverse zero-based binomial transform of the odd prime numbers.

Crossrefs

For all primes (not just odd) we have A007442.
Including 1 in the primes gives A030016.
Column n=2 of A095195.
The version for partitions is A320590 (first column A281425), see A175804, A053445.
For nonprime instead of prime we have A377036, see A377034-A377037.
Arrays of differences: A095195, A376682, A377033, A377038, A377046, A377051.
A000040 lists the primes, differences A001223, A036263.
A002808 lists the composite numbers, differences A073783, A073445.
A008578 lists the noncomposite numbers, differences A075526.

Programs

  • Mathematica
    nn=40;Table[Differences[Prime[Range[nn+2]],n][[2]],{n,0,nn}]
  • PARI
    a(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * prime(k+2)); \\ Michel Marcus, Jan 12 2025

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * prime(k+2).
Showing 1-9 of 9 results.