A377119
a(n) = coefficient of 2^(2/3) in the expansion of (2^(1/3) + 2^(2/3))^n.
Original entry on oeis.org
0, 1, 1, 6, 12, 42, 108, 324, 900, 2592, 7344, 20952, 59616, 169776, 483408, 1376352, 3919104, 11158560, 31772736, 90465984, 257587776, 733432320, 2088322560, 5946120576, 16930529280, 48206658816, 137259899136, 390823128576, 1112799347712, 3168498166272
Offset: 0
((2^(1/3) + 2^(2/3)))^3 = 4 + 2*2^(1/3) + 2^(2/3), so a(3) = 1.
-
(* Program 1 generates sequences A377117-A377119. *)
tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 30}];
u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
{s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
s3 (* Peter J. C. Moses, Oct 16 2024 *)
(* Program 2 generates (a(n)) for n>=1. *)
LinearRecurrence[{0,6,6}, {0,1,1}, 30]
A377118
a(n) = coefficient of 2^(1/3) in the expansion of (2^(1/3) + 2^(2/3))^n.
Original entry on oeis.org
0, 1, 2, 6, 18, 48, 144, 396, 1152, 3240, 9288, 26352, 75168, 213840, 609120, 1734048, 4937760, 14059008, 40030848, 113980608, 324539136, 924068736, 2631118464, 7491647232, 21331123200, 60736594176, 172936622592, 492406304256, 1402039300608, 3992057561088
Offset: 0
((2^(1/3) + 2^(2/3)))^3 = 4 + 2*2^(1/3) + 2^(2/3), so a(3) = 2.
-
(* Program 1 generates sequences A377117-A377119. *)
tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 30}];
u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
{s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
s2 (* Peter J. C. Moses, Oct 16 2024 *)
(* Program 2 generates (a(n)) for n>=1. *)
LinearRecurrence[{0,6,6}, {0,1,2}, 30]
A377314
a(n) = coefficient of the term that is independent of 2^(1/3) and 2^(2/3) in the expansion of (1 + 2^(1/3) + 2^(2/3))^n.
Original entry on oeis.org
1, 1, 5, 19, 73, 281, 1081, 4159, 16001, 61561, 236845, 911219, 3505753, 13487761, 51891761, 199644319, 768096001, 2955112721, 11369270485, 43741245619, 168286661033, 647452990441, 2490960200041, 9583526232479, 36870912288001, 141854275761481
Offset: 0
((1 + 2^(1/3) + 2^(2/3)))^3 = 19 + 15 2^(1/3) + 12 2^(2/3), so a(3) = 19.
-
(* Program 1 generates sequences A377314-A377315 and A108368. *)
tbl = Table[Expand[(1 + 2^(1/3) + 2^(2/3))^n], {n, 0, 24}];
Take[tbl, 6]
u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
{s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
s1 (* Peter J. C. Moses, Oct 16 2024 *)
(* Program 2 generates (a(n)) for n>=1. *)
LinearRecurrence[{3,3,1}, {1, 1, 5}, 15]
A377315
a(n) = coefficient of 2^(1/3) in the expansion of (1 + 2^(1/3) + 2^(2/3))^n.
Original entry on oeis.org
0, 1, 4, 15, 58, 223, 858, 3301, 12700, 48861, 187984, 723235, 2782518, 10705243, 41186518, 158457801, 609638200, 2345474521, 9023795964, 34717449655, 133569211378, 513883779063, 1977076420978, 7606449811501, 29264462476500, 112589813284981, 433169277095944
Offset: 0
(1 + 2^(1/3) + 2^(2/3))^3 = 19 + 15 2^(1/3) + 12 2^(2/3), so a(3) = 15.
-
(* Program 1 generates sequences A377314-A377315 and A108368. *)
tbl = Table[Expand[(1 + 2^(1/3) + 2^(2/3))^n], {n, 0, 24}];
Take[tbl, 6]
u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
{s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
s2 (* Peter J. C. Moses, Oct 16 2024 *)
(* Program 2 generates (a(n)) for n>=1. *)
LinearRecurrence[{3,3,1}, {0, 1, 4}, 15]
A377110
a(n) = coefficient of sqrt(2) in the expansion of (2 + sqrt(2) + sqrt(3))^n.
Original entry on oeis.org
0, 1, 4, 23, 120, 629, 3260, 16843, 86832, 447241, 2302516, 11851487, 60995880, 313912637, 1615504748, 8313878227, 42785563488, 220186165393, 1133137017700, 5831424517415, 30010056528600, 154439694647429, 794787521046812, 4090186754982235, 21049182488180880
Offset: 0
(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 4.
-
(* Program 1 generates sequences A377109-A377112. *)
tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
{s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
s2 (* Peter J. C. Moses, Oct 16 2024 *)
(* Program 2 generates this sequence. *)
LinearRecurrence[{8, -14, -8, 23}, {0, 1, 4, 23}, 25]
A377111
a(n) = coefficient of sqrt(3) in the expansion of (2 + sqrt(2) + sqrt(3))^n.
Original entry on oeis.org
0, 1, 4, 21, 104, 529, 2700, 13845, 71120, 365697, 1881236, 9679605, 49809720, 256324433, 1319090972, 6788338869, 34934465440, 179781713537, 925203573540, 4761340669269, 24503114321416, 126099496024593, 648941324534188, 3339623572751061, 17186585699725680
Offset: 0
(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 4.
-
(* Program 1 generates sequences A377109-A377112. *)
tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
{s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
s3 (* Peter J. C. Moses, Oct 16 2024 *)
(* Program 2 generates this sequence. *)
LinearRecurrence[{8, -14, -8, 23}, {0, 1, 4, 21}, 25]
Comments