cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A377119 a(n) = coefficient of 2^(2/3) in the expansion of (2^(1/3) + 2^(2/3))^n.

Original entry on oeis.org

0, 1, 1, 6, 12, 42, 108, 324, 900, 2592, 7344, 20952, 59616, 169776, 483408, 1376352, 3919104, 11158560, 31772736, 90465984, 257587776, 733432320, 2088322560, 5946120576, 16930529280, 48206658816, 137259899136, 390823128576, 1112799347712, 3168498166272
Offset: 0

Views

Author

Clark Kimberling, Oct 26 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 2,2,4,5,2,5 and these periods:
p = 2: (2,1)
p = 3: (7, 1)
p = 5: (21, 5, 13, 1)
p = 7: (15, 17, 20, 43, 1)
p = 11: (9, 1)
p = 13: (102, 5, 17, 15, 1)
See A377109 for a guide to related sequences.

Examples

			((2^(1/3) + 2^(2/3)))^3 = 4 + 2*2^(1/3) + 2^(2/3), so a(3) = 1.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377117-A377119. *)
    tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 30}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
    s3   (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates (a(n)) for n>=1. *)
    LinearRecurrence[{0,6,6}, {0,1,1}, 30]

Formula

a(n) = 6*a(n-2) + 6*a(n-3) for n>=1, with a(0)=0, a(1)=1, a(3)=1.
G.f.: x*(1 + x)/(1 - 6*x^2 - 6*x^3).

A377118 a(n) = coefficient of 2^(1/3) in the expansion of (2^(1/3) + 2^(2/3))^n.

Original entry on oeis.org

0, 1, 2, 6, 18, 48, 144, 396, 1152, 3240, 9288, 26352, 75168, 213840, 609120, 1734048, 4937760, 14059008, 40030848, 113980608, 324539136, 924068736, 2631118464, 7491647232, 21331123200, 60736594176, 172936622592, 492406304256, 1402039300608, 3992057561088
Offset: 0

Views

Author

Clark Kimberling, Oct 26 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 6 primes, with respective period lengths 1,5,4,17,1,13 and these periods:
p = 2: (1)
p = 3: (9, 4, 1, 2, 8)
p = 5: (7, 6, 5, 22)
p = 7: (60, 23, 5, 9, 16, 8, 42, 7, 19, 1, 2, 10, 31, 4, 11, 6, 34)
p = 11: (30)
p = 13: (119, 13, 9, 25, 15, 51, 45, 1, 2, 17, 41, 28, 54)
See A377109 for a guide to related sequences.

Examples

			((2^(1/3) + 2^(2/3)))^3 = 4 + 2*2^(1/3) + 2^(2/3), so a(3) = 2.
		

Crossrefs

Programs

  • Mathematica
    (* Program 1 generates sequences A377117-A377119. *)
    tbl = Table[Expand[(2^(1/3) + 2^(2/3))^n], {n, 0, 30}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
    s2   (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates (a(n)) for n>=1. *)
    LinearRecurrence[{0,6,6}, {0,1,2}, 30]

Formula

a(n) = 6*a(n-2) + 6*a(n-3) for n>=1, with a(0)=0, a(1)=1, a(3)=2.
G.f.: x*(1 + 2*x)/(1 - 6*x^2 - 6*x^3).

A377314 a(n) = coefficient of the term that is independent of 2^(1/3) and 2^(2/3) in the expansion of (1 + 2^(1/3) + 2^(2/3))^n.

Original entry on oeis.org

1, 1, 5, 19, 73, 281, 1081, 4159, 16001, 61561, 236845, 911219, 3505753, 13487761, 51891761, 199644319, 768096001, 2955112721, 11369270485, 43741245619, 168286661033, 647452990441, 2490960200041, 9583526232479, 36870912288001, 141854275761481
Offset: 0

Views

Author

Clark Kimberling, Oct 26 2024

Keywords

Comments

See A377109 for a guide to related sequences.

Examples

			((1 + 2^(1/3) + 2^(2/3)))^3 = 19 + 15 2^(1/3) + 12 2^(2/3), so a(3) = 19.
		

Crossrefs

Cf. A377109, A377117, A377315, A108368 (coefficients of 2^(2/3)).

Programs

  • Mathematica
    (* Program 1 generates sequences A377314-A377315 and A108368. *)
    tbl = Table[Expand[(1 + 2^(1/3) + 2^(2/3))^n], {n, 0, 24}];
    Take[tbl, 6]
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
    s1  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates (a(n)) for n>=1. *)
    LinearRecurrence[{3,3,1}, {1, 1, 5}, 15]

Formula

a(n) = 3*a(n-1) + 3*a(n-2) + a(n-3), with a(0)=1, a(1)=1, a(3)=5. [Corrected by Jianing Song, Oct 31 2024]
G.f.: (-1 + 2 x + x^2)/(-1 + 3 x + 3 x^2 + x^3).

A377315 a(n) = coefficient of 2^(1/3) in the expansion of (1 + 2^(1/3) + 2^(2/3))^n.

Original entry on oeis.org

0, 1, 4, 15, 58, 223, 858, 3301, 12700, 48861, 187984, 723235, 2782518, 10705243, 41186518, 158457801, 609638200, 2345474521, 9023795964, 34717449655, 133569211378, 513883779063, 1977076420978, 7606449811501, 29264462476500, 112589813284981, 433169277095944
Offset: 0

Views

Author

Clark Kimberling, Oct 26 2024

Keywords

Comments

See A377109 for a guide to related sequences.

Examples

			(1 + 2^(1/3) + 2^(2/3))^3 = 19 + 15 2^(1/3) + 12 2^(2/3), so a(3) = 15.
		

Crossrefs

Cf. A377109, A377117, A377314, A108368 (coefficients of 2^(2/3)).

Programs

  • Mathematica
    (* Program 1 generates sequences A377314-A377315 and A108368. *)
    tbl = Table[Expand[(1 + 2^(1/3) + 2^(2/3))^n], {n, 0, 24}];
    Take[tbl, 6]
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1, s2, s3} = Transpose[(PadRight[#1, 3] &) /@ Last /@ u][[1 ;; 3]];
    s2  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates (a(n)) for n>=1. *)
    LinearRecurrence[{3,3,1}, {0, 1, 4}, 15]

Formula

a(n) = 3*a(n-1) + 3*a(n-2) + a(n-3), with a(0)=0, a(1)=1, a(3)=4.
G.f.: -((x (1 + x))/(-1 + 3 x + 3 x^2 + x^3)).

A377110 a(n) = coefficient of sqrt(2) in the expansion of (2 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 1, 4, 23, 120, 629, 3260, 16843, 86832, 447241, 2302516, 11851487, 60995880, 313912637, 1615504748, 8313878227, 42785563488, 220186165393, 1133137017700, 5831424517415, 30010056528600, 154439694647429, 794787521046812, 4090186754982235, 21049182488180880
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 7 primes, with respective period lengths 1,8,18,17,3,11,50 and these periods:
p = 2: (4)
p = 3: (4,2,6,6,1,1,3,1)
p = 5: (12,2,10,7,3,2,3,9,12,1,8,2,1,12,12,5,7,12)
p = 7: (5, 16, 26, 22, 13, 2, 1, 24, 16, 57, 2, 30, 9, 19, 6, 28, 12)
p = 11: (29, 70, 61)
p = 13: (21, 3, 24, 15, 9, 24, 9, 15, 24, 3, 21)
p = 17: (19, 11, 30, 4, 21, 2, 3, 22, 8, 7, 23, 24, 6, 30, 30, 11, 10, 9, 26, 4, 30, 18, 12, 30, 30, 15, 15, 30, 30, 8, 4, 11, 7, 30, 30, 9, 7, 14, 30, 5, 9, 16, 6, 24, 30, 30, 3, 27, 30, 30)
See A377109 for a guide to related sequences.

Examples

			(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 4.
		

Crossrefs

Cf. A377109.

Programs

  • Mathematica
    (* Program 1 generates sequences A377109-A377112. *)
    tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
    s2  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{8, -14, -8, 23}, {0, 1, 4, 23}, 25]

Formula

a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=0, a(1)=1, a(3)=4, a(4)=23.
G.f.: x*(-1 + 4*x - 5*x^2)/(-1 + 8*x - 14*x^2 - 8*x^3 + 23*x^4).
a(n) = ((2 + sqrt(2) + sqrt(3))^n - (2 - sqrt(2) - sqrt(3))^n + (2 + sqrt(2) - sqrt(3))^n - (2 - sqrt(2) + sqrt(3))^n) / 2^(5/2). - Vaclav Kotesovec, Oct 21 2024

A377111 a(n) = coefficient of sqrt(3) in the expansion of (2 + sqrt(2) + sqrt(3))^n.

Original entry on oeis.org

0, 1, 4, 21, 104, 529, 2700, 13845, 71120, 365697, 1881236, 9679605, 49809720, 256324433, 1319090972, 6788338869, 34934465440, 179781713537, 925203573540, 4761340669269, 24503114321416, 126099496024593, 648941324534188, 3339623572751061, 17186585699725680
Offset: 0

Views

Author

Clark Kimberling, Oct 20 2024

Keywords

Comments

Conjecture: every prime divides a(n) for infinitely many n, and if K(p) = (k(1), k(2),...) is the maximal subsequence of indices n such that p divides a(n), then the difference sequence of K(p) is eventually periodic; indeed, K(p) is purely periodic for the first 7 primes, with respective period lengths 6,8,7,28,16,14,50:
p = 2: (3, 3, 1, 2, 2, 1)
p = 3: (6, 1, 1, 3, 1, 4, 2, 6)
p = 5: (32, 21, 20, 10, 20, 9, 8)
p = 7: (18, 18, 8, 10, 18, 18, 11, 7, 18, 18, 1, 3, 13, 1, 5, 5, 8, 18, 14, 4, 18, 13, 5, 2, 16, 7, 9, 2)
p = 11: (16, 16, 16, 16, 12, 4, 1, 15, 7, 8, 1, 4, 12, 16, 9, 7)
p = 13: (24, 18, 6, 24, 12, 1, 11, 24, 5, 1, 17, 1, 7, 17)
p = 17: (15, 30, 30, 8, 4, 11, 7, 30, 30, 9, 7, 14, 30, 5, 9, 16, 6, 24, 30, 30, 3, 27, 30, 30, 19, 11, 30, 4, 21, 2, 3, 22, 8, 7, 23, 24, 6, 30, 30, 11, 10, 9, 26, 4, 30, 18, 12, 30, 30, 15).
See A377109 for a guide to related sequences.

Examples

			(2 + sqrt(2) + sqrt(3))^3 = 9 + 4*sqrt(2) + 4*sqrt(3) + 2*sqrt(6), so a(3) = 4.
		

Crossrefs

Cf. A377109.

Programs

  • Mathematica
    (* Program 1 generates sequences A377109-A377112. *)
    tbl = Table[Expand[(2 + Sqrt[2] + Sqrt[3])^n], {n, 0, 24}];
    u = MapApply[{#1/#2, #2} /. {1, #} -> {{1}, {#}} &,
       Map[({#1, #1 /. ^ -> 1} &), Map[(Apply[List, #1] &), tbl]]];
    {s1,s2,s3,s4}=Transpose[(PadRight[#1,4]&)/@Last/@u][[1;;4]];
    s3  (* Peter J. C. Moses, Oct 16 2024 *)
    (* Program 2 generates this sequence. *)
    LinearRecurrence[{8, -14, -8, 23}, {0, 1, 4, 21}, 25]

Formula

a(n) = 8*a(n-1) - 14*a(n-2) - 8*a(n-3) + 23*a(n-4), with a(0)=0, a(1)=1, a(3)=4, a(4)=21.
G.f.: x*(-1 + 4*x - 3*x^2)/(-1 + 8*x - 14*x^2 - 8*x^3 + 23*x^4).
a(n) = ((2 - sqrt(2) + sqrt(3))^n + (2 + sqrt(2) + sqrt(3))^n - (2 - sqrt(2) - sqrt(3))^n - (2 + sqrt(2) - sqrt(3))^n) / (4*sqrt(3)). - Vaclav Kotesovec, Oct 21 2024
Previous Showing 11-16 of 16 results.