cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A378084 Nonsquarefree numbers not appearing in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

9, 25, 27, 28, 36, 45, 49, 50, 52, 56, 64, 76, 81, 88, 92, 96, 99, 100, 117, 120, 121, 124, 125, 126, 135, 136, 144, 147, 148, 153, 156, 162, 169, 171, 172, 176, 188, 189, 204, 207, 208, 216, 220, 225, 236, 243, 244, 245, 248, 250, 256, 261, 268, 275, 276, 280
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377784.

Examples

			The terms together with their prime indices begin:
    9: {2,2}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
   36: {1,1,2,2}
   45: {2,2,3}
   49: {4,4}
   50: {1,3,3}
   52: {1,1,6}
   56: {1,1,1,4}
   64: {1,1,1,1,1,1}
   76: {1,1,8}
   81: {2,2,2,2}
   88: {1,1,1,5}
   92: {1,1,9}
   96: {1,1,1,1,1,2}
		

Crossrefs

Disjoint from A377783 (union A378040), first-differences A377784.
Appearing once: A378082.
Appearing twice: A378083.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061398 counts squarefree numbers between primes (sums A337030), zeros A068360.
A061399 counts nonsquarefree numbers between primes (sums A378086), zeros A068361.
A070321 gives the greatest squarefree number up to n.
A112925 gives least squarefree number > prime(n), differences A378038.
A112926 gives greatest squarefree number < prime(n), differences A378037.
A120327 (union A162966) gives least nonsquarefree number >= n, differences A378039.
A377046 encodes k-differences of nonsquarefree numbers, zeros A377050.

Programs

  • Mathematica
    nn=100;
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,nn}];
    Complement[Select[Range[Prime[nn]],!SquareFreeQ[#]&],y]

Formula

Complement of A378040 in A013929.

A378083 Nonsquarefree numbers appearing exactly twice in A377783 (least nonsquarefree number > prime(n)).

Original entry on oeis.org

4, 8, 32, 44, 104, 140, 284, 464, 572, 620, 644, 824, 860, 1232, 1292, 1304, 1484, 1700, 1724, 1880, 2084, 2132, 2240, 2312, 2384, 2660, 2732, 2804, 3392, 3464, 3560, 3920, 3932, 4004, 4220, 4244, 4424, 4640, 4724, 5012, 5444, 5480, 5504, 5660, 6092, 6200
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2024

Keywords

Comments

Warning: do not confuse with A377783.

Examples

			The terms together with their prime indices begin:
     4: {1,1}
     8: {1,1,1}
    32: {1,1,1,1,1}
    44: {1,1,5}
   104: {1,1,1,6}
   140: {1,1,3,4}
   284: {1,1,20}
   464: {1,1,1,1,10}
   572: {1,1,5,6}
   620: {1,1,3,11}
   644: {1,1,4,9}
   824: {1,1,1,27}
   860: {1,1,3,14}
  1232: {1,1,1,1,4,5}
		

Crossrefs

Subset of A377783 (union A378040, diffs A377784), restriction of A120327 (diffs A378039).
Terms appearing once are A378082.
Terms not appearing at all are A378084.
A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A061398 counts squarefree numbers between primes, zeros A068360.
A061399 counts nonsquarefree numbers between primes, zeros A068361.
A071403(n) = A013928(prime(n)) counts squarefree numbers < prime(n).
A378086(n) = A057627(prime(n)) counts nonsquarefree numbers < prime(n).
Cf. A112926 (diffs A378037), opposite A112925 (diffs A378038).
Cf. A378032 (diffs A378034), restriction of A378033 (diffs A378036).

Programs

  • Mathematica
    y=Table[NestWhile[#+1&,Prime[n],SquareFreeQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==2&]

A378374 Perfect powers p such that the interval from the previous perfect power to p contains a unique prime.

Original entry on oeis.org

128, 225, 256, 64009, 1295044
Offset: 1

Views

Author

Gus Wiseman, Dec 17 2024

Keywords

Comments

Also numbers appearing exactly once in A378249.

Examples

			The consecutive perfect powers 125 and 128 have interval (125, 126, 127, 128) with unique prime 127, so 128 is in the sequence.
		

Crossrefs

The previous prime is A178700.
For prime powers instead of perfect powers we have A345531, difference A377281.
Opposite singletons in A378035 (union A378253), restriction of A081676.
For squarefree numbers we have A378082, see A377430, A061398, A377431, A068360.
Singletons in A378249 (run-lengths A378251), restriction of A377468 to the primes.
If the same interval contains at least one prime we get A378250.
For next instead of previous perfect power we have A378355.
Swapping "prime" with "perfect power" gives A378364.
A000040 lists the primes, differences A001223.
A001597 lists the perfect powers, differences A053289.
A007916 lists the non perfect powers, differences A375706.
A069623 counts perfect powers <= n.
A076411 counts perfect powers < n.
A080769 counts primes between perfect powers.

Programs

  • Mathematica
    radQ[n_]:=n>1&&GCD@@Last/@FactorInteger[n]==1;
    y=Table[NestWhile[#+1&,Prime[n],radQ[#]&],{n,1000}];
    Select[Union[y],Count[y,#]==1&]

Formula

We have a(n) < A178700(n) < A378355(n).

A380413 Terms appearing twice in A378086 (number of nonsquarefree numbers < prime(n)).

Original entry on oeis.org

0, 1, 11, 14, 39, 53, 109, 179, 222, 240, 251, 319, 337, 481, 505, 508, 578, 664, 674, 738, 818, 835, 877, 905, 933, 1041, 1069, 1098, 1325, 1352, 1392, 1535, 1539, 1567, 1652, 1663, 1732, 1817, 1849, 1960, 2134, 2148, 2158, 2220, 2387, 2428, 2457, 2622, 2625
Offset: 1

Views

Author

Gus Wiseman, Feb 06 2025

Keywords

Crossrefs

A000040 lists the primes, differences A001223, seconds A036263.
A005117 lists the squarefree numbers, differences A076259.
A013929 lists the nonsquarefree numbers, differences A078147, seconds A376593.
A061399 counts nonsquarefree integers between primes, see A068361, A061398, A068360, A377783, A378086.
A070321 gives the greatest squarefree number up to n.
A071403 counts squarefree numbers < prime(n), see A373198, A337030.
A112925 gives the greatest squarefree number between primes, least A112926.
Cf. A057627, A065890, A378032 (differences A378034), A378033 (differences A378036).

Programs

  • Mathematica
    y=Table[Length[Select[Range[Prime[n]],!SquareFreeQ[#]&]],{n,100}];
    Select[Most[Union[y]],Count[y,#]==2&]

Formula

a(n) = A378086(A068361(n)) = A378086(A068361(n)+1).
Previous Showing 11-14 of 14 results.