cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A380020 Expansion of e.g.f. 1/sqrt(exp(-2*x) - 2*x*exp(-x)).

Original entry on oeis.org

1, 2, 8, 55, 540, 6861, 106828, 1968443, 41884496, 1010558161, 27259824996, 812935829355, 26556802948624, 943118750625377, 36176486632451012, 1490585029223430691, 65656827447552549504, 3078782615385684631809, 153127047650469476373316
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (-2)^k*(k+1)^(n-k)*binomial(-1/2, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (-2)^k * (k+1)^(n-k) * binomial(-1/2,k)/(n-k)!.

A380028 Expansion of e.g.f. sqrt(1 - 2*x*exp(x)).

Original entry on oeis.org

1, -1, -3, -12, -79, -760, -9561, -147994, -2716239, -57632040, -1387518625, -37365406606, -1112793904311, -36312032900884, -1288357188957489, -49380149141206290, -2033232328710195871, -89506187915127440560, -4194948681994077973377, -208545134727411799745878
Offset: 0

Views

Author

Seiichi Manyama, Jan 09 2025

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Sqrt[1-2x Exp[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 22 2025 *)
  • PARI
    a(n) = n!*sum(k=0, n, (-2)^k*k^(n-k)*binomial(1/2, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (-2)^k * k^(n-k) * binomial(1/2,k)/(n-k)!.
Previous Showing 11-12 of 12 results.