A382712 Regarding A381019 as a permutation of the natural numbers, this is the cycle with smallest term 8, read in the reverse direction.
8, 16, 64, 975, 126300
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A381019(47) = 10 = 2*prime(3), so a(3) = 47.
7643 is a term, since 75, 7643 and 58 are three consecutive terms of A381019, where A381019(1033) = 7643 is prime, while A381019(1032) = 75 and A381019(1034) = 58 are both composite numbers.
Table listing n and S(n), where i = pi(sqrt(S(n))) and S = A381019. Asterisks denote confirmed S(n) = prime(i)^2 coprime to P(r)/prime(i), where P = A002110 and r, the index of the largest prime in S(1..n-1). n i S(n) -------------------------- 7 1 2^2 = 4 * 13 2 3^2 = 9 * 30 3 5^2 = 25 * 55 4 7^2 = 49 * 178 6 13^2 = 169 * 468 5 11^2 = 121 541 9 23^2 = 529 * 854 10 29^2 = 841 * 1454 7 17^2 = 289 2099 8 19^2 = 361 3744 18 61^2 = 3721 * 7330 11 31^2 = 961 9091 12 37^2 = 1369 10138 13 41^2 = 1681 11917 29 109^2 = 11881 14154 14 43^2 = 1849 14350 15 47^2 = 2209 19363 34 139^2 = 19321 21555 16 53^2 = 2809 23553 17 59^2 = 3481 26615 38 163^2 = 26569 36109 21 73^2 = 5329 36533 43 191^2 = 36481 37302 44 193^2 = 37249 51588 49 227^2 = 51529 52576 20 71^2 = 5041 57183 52 239^2 = 57121 58064 19 67^2 = 4489 58144 53 241^2 = 58081 63067 54 251^2 = 63001
s = {1}; nn = 4000; r = 1; u = v = 2; c[_] = False; MapIndexed[Set[{a[First[#2]], c[#1]}, {#1, True}] &, s]; While[c[u], u++]; While[Or[c[v], CompositeQ[v]], v++]; Monitor[Reap[ Do[k = u; q = Product[a[h], {h, n - Min[k, n - 1], n - 1}]; While[Or[c[k], ! CoprimeQ[k, q]], If[k > n - 1, k = v; q = Product[a[i], {i, r}], k++; q *= a[n - k] ] ]; Set[{a[n], c[k]}, {k, True}]; If[And[PrimeQ[k], # > r], r = #] &[PrimePi[k]]; If[PrimeQ@ Sqrt[k], Sow[n]]; If[k == u, While[c[u], u++]]; If[k == v, While[Or[c[v], CompositeQ[v]], v++]], {n, Length[s] + 1, nn}] ][[-1, 1]], n]
For n = 2, we observe that 9, 31, 37, and 8 are four consecutive terms of A381019, where 31 and 37 are exactly two consecutive primes and represent the first occurrence of two consecutive terms that are prime. So, a(2) = 31.
The number a(25) = 6 shares a factor with a(16) = 8, and therefore must be at "distance" > 8 (i.e., separated by 8 relatively prime terms) from a(16). This is the first example where the smaller of two terms sharing a common factor occurs after the larger one.
S=U=[1]; A381167(n)=while(#Smax(k,S[m]) || return) next_term()={S[#S]>U[1]&& U=setunion(U,[S[#S]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); for(k=U[1]+1,oo, !setsearch(U, k) && ok(k) && return(k))}
Comments