cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A382712 Regarding A381019 as a permutation of the natural numbers, this is the cycle with smallest term 8, read in the reverse direction.

Original entry on oeis.org

8, 16, 64, 975, 126300
Offset: 1

Views

Author

N. J. A. Sloane, Apr 06 2025

Keywords

Comments

See A382711 for further information.

Crossrefs

A379811 a(n) = index of 2*prime(n) in A381019.

Original entry on oeis.org

7, 23, 47, 79, 123, 223, 325, 364, 630, 910, 1034, 1310, 1610, 1857, 2219, 2819, 3378, 3979, 4499, 4773, 5057, 5790, 6899, 7581, 9226, 9429, 10225, 11459, 12329, 12781, 15890, 16910, 18506, 19887, 22211, 22514, 23738, 27231, 27899, 29602, 32055, 32418, 37255, 38031
Offset: 1

Views

Author

N. J. A. Sloane, Feb 15 2025

Keywords

Examples

			A381019(47) = 10 = 2*prime(3), so a(3) = 47.
		

Crossrefs

Extensions

More terms from Michael De Vlieger, Feb 15 2025.

A381027 Isolated primes in A381019.

Original entry on oeis.org

7643, 26357, 31643, 73517, 114073, 240263, 272347, 635821, 1719491, 2981159, 3610597, 4783469, 5294351, 7140083, 7170769, 9813593, 12521141, 13172477, 20443837, 22499627, 24098573, 24147133, 24891641, 50832209, 57741727, 60328483, 65714459, 84701363, 128297069
Offset: 1

Views

Author

Gonzalo Martínez, Mar 03 2025

Keywords

Comments

Prime numbers k in A381019 such that if k = A381019(m) for some integer m, then A381019(m - 1) and A381019(m + 1) are both composite.

Examples

			7643 is a term, since 75, 7643 and 58 are three consecutive terms of A381019, where A381019(1033) = 7643 is prime, while A381019(1032) = 75 and A381019(1034) = 58 are both composite numbers.
		

Crossrefs

Extensions

More terms from Jinyuan Wang, Mar 09 2025

A381095 Indices of prime squares in A381019.

Original entry on oeis.org

7, 13, 30, 55, 178, 468, 541, 854, 1454, 2099, 3744, 7330, 9091, 10138, 11917, 14154, 14350, 19363, 21555, 23553, 26615, 36109, 36533, 37302, 51588, 52576, 57183, 58064, 58144, 63067, 69927, 70135, 80174, 81920, 85923, 89936, 93749, 99240, 121884, 124693, 151411
Offset: 1

Views

Author

Michael De Vlieger, Feb 16 2025

Keywords

Comments

Let S = A381019.
Observation: S(n) < n for S(n) = prime(i)^2 for some i.

Examples

			Table listing n and S(n), where i = pi(sqrt(S(n))) and S = A381019. Asterisks denote confirmed S(n) = prime(i)^2 coprime to P(r)/prime(i), where P = A002110 and r, the index of the largest prime in S(1..n-1).
      n    i             S(n)
  --------------------------
      7    1     2^2 =     4 *
     13    2     3^2 =     9 *
     30    3     5^2 =    25 *
     55    4     7^2 =    49 *
    178    6    13^2 =   169 *
    468    5    11^2 =   121
    541    9    23^2 =   529 *
    854   10    29^2 =   841 *
   1454    7    17^2 =   289
   2099    8    19^2 =   361
   3744   18    61^2 =  3721 *
   7330   11    31^2 =   961
   9091   12    37^2 =  1369
  10138   13    41^2 =  1681
  11917   29   109^2 = 11881
  14154   14    43^2 =  1849
  14350   15    47^2 =  2209
  19363   34   139^2 = 19321
  21555   16    53^2 =  2809
  23553   17    59^2 =  3481
  26615   38   163^2 = 26569
  36109   21    73^2 =  5329
  36533   43   191^2 = 36481
  37302   44   193^2 = 37249
  51588   49   227^2 = 51529
  52576   20    71^2 =  5041
  57183   52   239^2 = 57121
  58064   19    67^2 =  4489
  58144   53   241^2 = 58081
  63067   54   251^2 = 63001
		

Crossrefs

Programs

  • Mathematica
    s = {1}; nn = 4000; r = 1; u = v = 2; c[_] = False;
    MapIndexed[Set[{a[First[#2]], c[#1]}, {#1, True}] &, s];
    While[c[u], u++]; While[Or[c[v], CompositeQ[v]], v++];
    Monitor[Reap[
      Do[k = u; q = Product[a[h], {h, n - Min[k, n - 1], n - 1}];
        While[Or[c[k], ! CoprimeQ[k, q]],
          If[k > n - 1, k = v; q = Product[a[i], {i, r}],
            k++; q *= a[n - k] ] ];
        Set[{a[n], c[k]}, {k, True}];
        If[And[PrimeQ[k], # > r], r = #] &[PrimePi[k]];
        If[PrimeQ@ Sqrt[k], Sow[n]];
        If[k == u, While[c[u], u++]];
        If[k == v, While[Or[c[v], CompositeQ[v]], v++]],
      {n, Length[s] + 1, nn}] ][[-1, 1]], n]

Extensions

More terms from Jinyuan Wang, Feb 25 2025

A381616 a(n) is the smallest prime that starts the first occurrence of exactly n consecutive primes in A381019.

Original entry on oeis.org

7643, 31, 3517, 1049, 2, 41, 173, 401, 523, 113, 337, 449, 6599, 251, 1993, 2543, 743, 593, 1481, 1301, 1069, 2357, 17657, 4079, 2797, 8219, 64123, 81299, 19289, 40129, 6709, 13999, 4271, 1669, 37579, 28793, 38039, 12413, 125711, 24907, 3181, 41597, 27253
Offset: 1

Views

Author

Gonzalo Martínez, Mar 01 2025

Keywords

Comments

As the sequence grows, increasingly longer chains of consecutive prime numbers begin to appear.
Conjecture: a(n) always exists.

Examples

			For n = 2, we observe that 9, 31, 37, and 8 are four consecutive terms of A381019, where 31 and 37 are exactly two consecutive primes and represent the first occurrence of two consecutive terms that are prime. So, a(2) = 31.
		

Crossrefs

A381167 Each term is the least positive integer not appearing earlier such that gcd(a(m),a(n)) = 1 or |m-n| > max(a(m),a(n)) for all m <> n.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 4, 13, 17, 19, 23, 29, 9, 31, 37, 8, 41, 43, 47, 53, 59, 61, 67, 71, 6, 73, 79, 83, 89, 25, 97, 101, 103, 107, 109, 113, 127, 12, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 14, 199, 211, 15, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277
Offset: 1

Views

Author

M. F. Hasler and Ali Sada, Feb 15 2025

Keywords

Comments

Not the same as A381019: here we have ..., 61, 67, 71, 6, ... where there we have 61, 6, 67, 71, ...

Examples

			The number a(25) = 6 shares a factor with a(16) = 8, and therefore must be at "distance" > 8 (i.e., separated by 8 relatively prime terms) from a(16). This is the first example where the smaller of two terms sharing a common factor occurs after the larger one.
		

Crossrefs

Cf. A381019.

Programs

  • PARI
    S=U=[1]; A381167(n)=while(#Smax(k,S[m]) || return)
    next_term()={S[#S]>U[1]&& U=setunion(U,[S[#S]]); while(#U>1&&U[2]==U[1]+1, U=U[^1]); for(k=U[1]+1,oo, !setsearch(U, k) && ok(k) && return(k))}

A381220 First differences of A381116.

Original entry on oeis.org

6, 3, 7, 7, 6, 11, 8, 8, 1, 15, 12, 9, 13, 10, 19, 7, 18, 11, 18, 5, 22, 12, 21, 3, 20, 11, 35, 5, 16, 18, 18, 23, 17, 20, 26, 17, 3, 42, 4, 7, 42, 22, 25, 1, 34, 9, 8, 47, 6, 55, 8, 49, 7, 8, 6, 42, 14, 32, 19, 6, 51, 2, 50, 11, 27, 42, 25, 46, 54, 21, 22, 45, 4, 16, 53, 4, 73, 10, 25, 39, 9, 70, 11, 46, 33, 49, 27, 11, 20, 17
Offset: 1

Views

Author

N. J. A. Sloane, Feb 18 2025

Keywords

Crossrefs

Previous Showing 11-17 of 17 results.