cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A382524 Number of ways to choose a different constant partition of each part of a constant partition of n.

Original entry on oeis.org

1, 1, 2, 2, 5, 2, 6, 2, 10, 3, 6, 2, 24, 2, 6, 4, 17, 2, 36, 2, 18, 4, 6, 2, 86, 3, 6, 10, 18, 2, 44, 2, 50, 4, 6, 4, 159, 2, 6, 4, 62, 2, 44, 2, 18, 30, 6, 2, 486, 3, 12, 4, 18, 2, 140, 4, 62, 4, 6, 2, 932, 2, 6, 30, 157, 4, 44, 2, 18, 4, 20, 2, 1500, 2, 6
Offset: 0

Views

Author

Gus Wiseman, Apr 03 2025

Keywords

Comments

These are strict twice-partitions of weight n and type PRR.

Examples

			The a(1) = 1 through a(8) = 10 twice-partitions:
  (1)  (2)   (3)    (4)      (5)      (6)       (7)        (8)
       (11)  (111)  (22)     (11111)  (33)      (1111111)  (44)
                    (1111)            (222)                (2222)
                    (11)(2)           (111111)             (22)(4)
                    (2)(11)           (111)(3)             (4)(22)
                                      (3)(111)             (1111)(4)
                                                           (4)(1111)
                                                           (11111111)
                                                           (1111)(22)
                                                           (22)(1111)
		

Crossrefs

For distinct instead of equal block-sums we have A279786.
This is the strict case of A279789.
The orderless version is A304442, see A353833, A381995, A381871.
Multiset partitions of this type are ranked by A326534 /\ A355743 /\ A005117.
Partitions with no partition of this type are counted by A382076, strict case of A381993.
Normal multiset partitions of this type are counted by the strict case of A382204.
A006171 counts multiset partitions into constant blocks of integer partitions of n.
A050361 counts factorizations into distinct prime powers, see A381715.
A317141 counts coarsenings of prime indices, refinements A300383.

Programs

  • Mathematica
    Table[If[n==0,1,Sum[Binomial[Length[Divisors[n/d]],d]*d!,{d,Divisors[n]}]],{n,0,100}]

Formula

a(n) = Sum_{d|n} binomial(A000005(n/d),d) * d!

A383309 Numbers whose prime indices are prime powers > 1 with a common sum of prime indices.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 17, 19, 23, 25, 27, 31, 35, 41, 49, 53, 59, 67, 81, 83, 97, 103, 109, 121, 125, 127, 131, 157, 175, 179, 191, 209, 211, 227, 241, 243, 245, 277, 283, 289, 311, 331, 343, 353, 361, 367, 391, 401, 419, 431, 461, 509, 529, 547, 563, 587, 599
Offset: 1

Views

Author

Gus Wiseman, Apr 25 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. We define the multiset of multisets with MM-number n to be formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}.

Examples

			The systems with these MM-numbers begin:
   1: {}
   3: {{1}}
   5: {{2}}
   7: {{1,1}}
   9: {{1},{1}}
  11: {{3}}
  17: {{4}}
  19: {{1,1,1}}
  23: {{2,2}}
  25: {{2},{2}}
  27: {{1},{1},{1}}
  31: {{5}}
  35: {{2},{1,1}}
  41: {{6}}
  49: {{1,1},{1,1}}
  53: {{1,1,1,1}}
  59: {{7}}
  67: {{8}}
  81: {{1},{1},{1},{1}}
  83: {{9}}
  97: {{3,3}}
		

Crossrefs

Twice-partitions of this type are counted by A279789.
For just a common sum we have A326534.
For just constant blocks we have A355743.
Numbers without a factorization of this type are listed by A381871, counted by A381993.
The multiplicative version is A381995.
This is the odd case of A382215.
For strict instead of constant blocks we have A382304.
A001055 counts factorizations, strict A045778.
A023894 counts partitions into prime-powers.
A034699 gives maximal prime-power divisor.
A050361 counts factorizations into distinct prime powers.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.
A317141 counts coarsenings of prime indices, refinements A300383.
A353864 counts rucksack partitions, ranked by A353866.
A355742 chooses a prime-power divisor of each prime index.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],SameQ@@Total/@prix/@prix[#]&&And@@PrimePowerQ/@prix[#]&]

Formula

Equals A326534 /\ A355743.

A383088 Numbers whose multiset of prime indices does not have all equal run-sums.

Original entry on oeis.org

6, 10, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30, 33, 34, 35, 36, 38, 39, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104, 105
Offset: 1

Views

Author

Gus Wiseman, Apr 17 2025

Keywords

Comments

First differs from A381871 in having 36.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The prime indices of 36 are {1,1,2,2}, with run-sums (2,4), so 36 is in the sequence, even though we have the multiset partition {{1,1},{2},{2}} with equal sums.
The terms together with their prime indices begin:
    6: {1,2}
   10: {1,3}
   14: {1,4}
   15: {2,3}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   22: {1,5}
   24: {1,1,1,2}
   26: {1,6}
   28: {1,1,4}
   30: {1,2,3}
   33: {2,5}
   34: {1,7}
   35: {3,4}
   36: {1,1,2,2}
   38: {1,8}
   39: {2,6}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   46: {1,9}
		

Crossrefs

For run-lengths instead of sums we have A059404, distinct A130092.
The complement is A353833, counted by A304442.
For distinct instead of equal run-sums we have A353839.
Partitions of this type are counted by A382076.
Counting and ranking partitions by run-lengths and run-sums:
- constant: A047966 (ranks A072774), sums A304442 (ranks A353833)
- distinct: A098859 (ranks A130091), sums A353837 (ranks A353838)
- weakly decreasing: A100882 (ranks A242031), sums A304405 (ranks A357875)
- weakly increasing: A100883 (ranks A304678), sums A304406 (ranks A357861)
- strictly decreasing: A100881 (ranks A304686), sums A304428 (ranks A357862)
- strictly increasing: A100471 (ranks A334965), sums A304430 (ranks A357864)
A001222 counts prime factors, distinct A001221.
A056239 adds up prime indices, row sums of A112798.
A326534 ranks multiset partitions with a common sum, counted by A321455, normal A326518.
A353851 counts compositions with a common run-sum, ranks A353848.
A353862 gives the greatest run-sum of prime indices, least A353931.
A382877 counts permutations of prime indices with equal run-sums, zeros A383100.
A383098 counts partitions with a permutation having all equal run-sums, ranks A383110.

Programs

  • Mathematica
    Select[Range[100], !SameQ@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]&]
Previous Showing 21-23 of 23 results.