A383514
Heinz numbers of non Wilf section-sum partitions.
Original entry on oeis.org
10, 14, 15, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 130, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 170, 177, 178, 182, 183, 185, 187, 190
Offset: 1
The terms together with their prime indices begin:
10: {1,3} 57: {2,8} 94: {1,15}
14: {1,4} 58: {1,10} 95: {3,8}
15: {2,3} 62: {1,11} 100: {1,1,3,3}
22: {1,5} 65: {3,6} 106: {1,16}
26: {1,6} 69: {2,9} 111: {2,12}
33: {2,5} 74: {1,12} 115: {3,9}
34: {1,7} 77: {4,5} 118: {1,17}
35: {3,4} 82: {1,13} 119: {4,7}
38: {1,8} 85: {3,7} 122: {1,18}
39: {2,6} 86: {1,14} 123: {2,13}
46: {1,9} 87: {2,10} 129: {2,14}
51: {2,7} 91: {4,6} 130: {1,3,6}
55: {3,5} 93: {2,11} 133: {4,8}
Ranking sequences are shown in parentheses below.
These partitions are counted by
A383506.
A122111 represents conjugation in terms of Heinz numbers.
A381431 is the section-sum transform.
A383508 counts partitions that are both Look-and-Say and section-sum (
A383515).
A383509 counts partitions that are Look-and-Say but not section-sum (
A383516).
A383509 counts partitions that are not Look-and-Say but are section-sum (
A384007).
A383510 counts partitions that are neither Look-and-Say nor section-sum (
A383517).
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Select[Range[100],disjointFamilies[conj[prix[#]]]!={}&&!UnsameQ@@Last/@FactorInteger[#]&]
A383519
Number of section-sum partitions of n that have all distinct multiplicities (Wilf).
Original entry on oeis.org
1, 1, 2, 2, 3, 3, 6, 7, 9, 12, 14, 19, 21, 27, 30, 33, 41, 50, 57, 68, 79, 89, 112, 126, 144, 172, 198, 220, 257, 298, 327, 383, 423, 477, 533, 621, 650, 760, 816, 920, 1013
Offset: 0
The a(1) = 1 through a(8) = 9 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (311) (33) (322) (44)
(1111) (11111) (222) (331) (332)
(411) (511) (611)
(3111) (4111) (2222)
(111111) (31111) (5111)
(1111111) (41111)
(311111)
(11111111)
Ranking sequences are shown in parentheses below.
These partitions are ranked by (
A383520).
-
disjointFamilies[y_]:=Select[Tuples[IntegerPartitions/@Length/@Split[y]],UnsameQ@@Join@@#&];
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
conj[y_]:=If[Length[y]==0,y,Table[Length[Select[y,#>=k&]],{k,1,Max[y]}]];
Table[Length[Select[IntegerPartitions[n],disjointFamilies[conj[#]]!={}&&UnsameQ@@Length/@Split[#]&]],{n,0,15}]
Comments