cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 413 results. Next

A386488 Record high points in A386487.

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 11, 25, 35, 64, 91, 108, 156, 194, 266, 471, 477, 538, 1308, 1485, 1945, 2479, 3256, 5328, 7247, 9008, 11566, 14859, 18714, 18815, 22031, 62149, 101919, 200924, 293629, 296260, 371947, 890616, 1177562, 2551932, 2827899, 3192227, 5538307, 6695946
Offset: 1

Views

Author

N. J. A. Sloane, Sep 01 2025

Keywords

Comments

Needs a b-file!

Crossrefs

Programs

  • Mathematica
    r = -1; s = Import["https://oeis.org/A386482/b386482.txt","Data"][[All, -1]]; Reap[Do[If[# > r, r = #; Sow[#]] &[s[[n]] - n], {n, Length[s]}] ][[-1, 1]] (* Michael De Vlieger, Sep 01 2025 *)
  • PARI
    \\ See Links section.

Extensions

More terms from Rémy Sigrist, Sep 02 2025

A386631 Values of u in the quartets (2, u, v, w) of type 3; i.e., values of u for solutions to 2(2 - u) = v(v - w), in distinct positive integers, with v > 1, sorted by nondecreasing values of u; see Comments.

Original entry on oeis.org

5, 6, 7, 8, 8, 8, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 14, 14, 15, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 19, 20, 20, 20, 20, 20, 20, 21, 22, 22, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 25, 26, 26, 26, 26, 26, 26, 26, 27, 27, 27, 28
Offset: 1

Views

Author

Clark Kimberling, Aug 22 2025

Keywords

Comments

A 4-tuple (m, u, v, w) is a quartet of type 3 if m, u, v, w are distinct positive integers such that m < v and m*(m - u) = v*(v - w). Here, the values of u are arranged in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m = 2.

Examples

			First 20 quartets (2,u,v,w) of type 3:
   m    u    v    w
   2    5    6    7
   2    6    8    9
   2    7   10   11
   2    8    3    7
   2    8    4    7
   2    8   12   13
   2    9   14   15
   2   10    4    8
   2   10   16   17
   2   11    3    9
   2   11    6    9
   2   11   18   19
   2   12    4    9
   2   12    5    9
   2   12   20   21
   2   13   22   23
   2   14    3   11
   2   14    4   10
   2   14    6   10
   2   14    8   11
2(2-10) = 4(4-8), so (2, 10, 4, 8) is in the list.
		

Crossrefs

Cf. A385182 (type 1), A386218 (type 2), A385476 (type 3, m=1), A387225, A387226.

Programs

  • Mathematica
    ssolnsM[m_Integer?Positive, u_Integer?Positive] :=
      Module[{n = m  (m - u), nn, sgn, ds, tups}, If[n == 0, Return[{}]];
       sgn = Sign[n]; nn = Abs[n];
       ds = Divisors[nn];
       If[sgn > 0, ds = Select[ds, # < nn/# &]];
       tups = ({m, u, nn/#, nn/# - sgn  #} & /@ ds);
       Select[tups, #[[3]] > 1 && #[[4]] > 0 && #[[2]] =!= #[[4]] &&
       Length@DeleteDuplicates[#] == 4 &]];
    (solns = Sort[Flatten[Map[solnsM[2, #] &, Range[2, 60]], 1]]) // ColumnForm
    Map[#[[2]] &, solns] (*A386631*)
    Map[#[[3]] &, solns] (*A387225*)
    Map[#[[4]] &, solns] (*A387226*)
    (* Peter J. C. Moses, Aug 22 2025 *)

A386655 E.g.f.: Sum_{n>=0} (2^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 3, 23, 708, 82677, 39043808, 75384175459, 594418947869568, 19030890530555146281, 2460681168464503636482816, 1280084112577610436036966382815, 2672769582069469500760580570122074560, 22366167041278673568399013569832022272725469
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [1, 0, 3, 0, 3, 2] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 2 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 3*x + 23*x^2/2! + 708*x^3/3! + 82677*x^4/4! + 39043808*x^5/5! + 75384175459*x^6/6! + 594418947869568*x^7/7! + ...
where A(x) = Sum_{n>=0} (2^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386656 (q=3), A386657 (q=4), A386658 (q=5), A386648.

Programs

  • Mathematica
    nmax = 15; Join[{1}, Rest[CoefficientList[Series[Sum[(2^k*x + LambertW[x])^k/k!, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]] (* Vaclav Kotesovec, Aug 23 2025 *)
  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 2^(k*(k+1)) * (2^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (2^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (2^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 2^(n^2) * exp( LambertW(x) * 2^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 2^(n^2) * (x/LambertW(x))^(2^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 2^(n*(n+1)) * x^n/n! * Sum_{k>=0} (2^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(k*(k+1)) * (2^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 2^(n*k) * (1 - (n-k)/2^k)^(n-k-1).
a(n) ~ 2^(n^2). - Vaclav Kotesovec, Aug 23 2025

A386656 E.g.f.: Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 4, 98, 21901, 45203076, 864855654349, 151334120052647134, 240066304912259832915171, 3437872829353908000927273009224, 443629285010311848968435132228644809721, 515464807017361539745514781011221080738833641050
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [4, 3, 2, 1, 0, 1] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 3 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 4*x + 98*x^2/2! + 21901*x^3/3! + 45203076*x^4/4! + 864855654349*x^5/5! + 151334120052647134*x^6/6! + ...
where A(x) = Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386657 (q=4), A386658 (q=5), A386648.

Programs

  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 3^(k*(k+1)) * (3^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (3^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (3^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 3^(n^2) * exp( LambertW(x) * 3^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 3^(n^2) * (x/LambertW(x))^(3^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 3^(n*(n+1)) * x^n/n! * Sum_{k>=0} (3^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(k*(k+1)) * (3^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n*k) * (1 - (n-k)/3^k)^(n-k-1).

A386657 E.g.f.: Sum_{n>=0} (4^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 5, 287, 274532, 4362420261, 1131407873777920, 4729288202285254702123, 317048074495318899943286044736, 340323907513179399929311813628104334217, 5846207259092593125133941613189798019292422881280
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [1, 2, 3, 2, 3, 4] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 4 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 5*x + 287*x^2/2! + 274532*x^3/3! + 4362420261*x^4/4! + 1131407873777920*x^5/5! + 4729288202285254702123*x^6/6! + ...
where A(x) = Sum_{n>=0} (4^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386656 (q=3), A386658 (q=5), A386648.

Programs

  • PARI
    {a(n) = sum(k=0,n, binomial(n,k) * 4^(k*(k+1)) * (4^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n) = my(A = sum(m=0, n, (4^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (4^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 4^(n^2) * exp( LambertW(x) * 4^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 4^(n^2) * (x/LambertW(x))^(4^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 4^(n*(n+1)) * x^n/n! * Sum_{k>=0} (4^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 4^(k*(k+1)) * (4^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 4^(n*k) * (1 - (n-k)/4^k)^(n-k-1).

A386658 E.g.f.: Sum_{n>=0} (5^n*x + LambertW(x))^n / n!.

Original entry on oeis.org

1, 6, 674, 2000229, 153566609748, 298500361403750381, 14557504055095871311168750, 17765160070810827062009088144577731, 542112188572462226990932242595876785196798632, 413592212104548192173492724488185195719396124921931347641
Offset: 0

Views

Author

Paul D. Hanna, Aug 23 2025

Keywords

Comments

Conjecture: for n >= 6, a(n) (mod 6) equals [4, 3, 0, 3, 0, 5] repeating.
In general, the following sums are equal:
(C.1) Sum_{n>=0} (q^n + p)^n * r^n/n!,
(C.2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 5 with p = LambertW(x)/x, r = x.

Examples

			E.g.f.: A(x) = 1 + 6*x + 674*x^2/2! + 2000229*x^3/3! + 153566609748*x^4/4! + 298500361403750381*x^5/5! + 14557504055095871311168750*x^6/6! + ...
where A(x) = Sum_{n>=0} (5^n*x + LambertW(x))^n / n!.
RELATED SERIES.
LambertW(x) = x - 2*x^2/2! + 3^2*x^3/3! - 4^3*x^4/4! + 5^4*x^5/5! - 6^5*x^6/6! + 7^6*x^7/7! + ... + (-1)^(n-1) * n^(n-1)*x^n/n! + ...
where exp(LambertW(x)) = x/LambertW(x);
also, (x/LambertW(x))^y = Sum_{k>=0} y*(y - k)^(k-1) * x^k/k!.
		

Crossrefs

Cf. A386655 (q=2), A386656 (q=3), A386657 (q=4), A386648.

Programs

  • PARI
    {a(n,q=5) = sum(k=0,n, binomial(n,k) * q^(k*(k+1)) * (q^k - (n-k))^(n-k-1) )}
    for(n=0, 12, print1(a(n), ", "))
    
  • PARI
    {a(n,q=5) = my(A = sum(m=0, n, (q^m + lambertw(x +x^3*O(x^n))/x)^m *x^m/m! )+x*O(x^n)); n! * polcoeff(A, n)}
    for(n=0, 12, print1(a(n), ", "))

Formula

E.g.f. A(x) = Sum_{n>=0} a(n)*x^n/n! satisfies the following formulas.
(1) A(x) = Sum_{n>=0} (5^n*x + LambertW(x))^n / n!.
(2) A(x) = Sum_{n>=0} 5^(n^2) * exp( LambertW(x) * 5^n ) * x^n / n!.
(3) A(x) = Sum_{n>=0} 5^(n^2) * (x/LambertW(x))^(5^n) * x^n / n!.
(4) A(x) = Sum_{n>=0} 5^(n*(n+1)) * x^n/n! * Sum_{k>=0} (5^n - k)^(k-1) * x^k/k!.
a(n) = Sum_{k=0..n} binomial(n,k) * 5^(k*(k+1)) * (5^k - (n-k))^(n-k-1).
a(n) = Sum_{k=0..n} binomial(n,k) * 5^(n*k) * (1 - (n-k)/5^k)^(n-k-1).

A386901 Integers y such that there exist two integers 0

Original entry on oeis.org

80850, 158340, 161070, 161700, 232050, 242550, 316680, 322140, 323400, 404250, 464100, 474810, 475020, 483210, 485100, 485940, 565950, 633360, 641550, 644280, 646800, 662340, 696150, 727650, 791700, 805350, 808500, 963270, 966420, 967890, 970200, 971880
Offset: 1

Views

Author

S. I. Dimitrov, Aug 07 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			158340 is in the sequence since psi(150150) = psi(158340) = psi(175350) = 483840 = 150150 + 158340 + 175350. Other examples: (232050, 232050, 261660), (7091700, 7098630, 7098630).
		

Crossrefs

A386933 Integers z such that there exist two integers 0

Original entry on oeis.org

81900, 161700, 163800, 175350, 245700, 261660, 323400, 327600, 350700, 409500, 485100, 490770, 491400, 499380, 523320, 526050, 526260, 573300, 646800, 647010, 655200, 671370, 701400, 702450, 737100, 784980, 808500, 819000, 876750, 970200, 971880, 981540, 982800, 990150, 998760
Offset: 1

Views

Author

S. I. Dimitrov, Aug 09 2025

Keywords

Comments

The numbers x, y and z form a psi-amicable triple.

Examples

			163800 is in the sequence since psi(158340) = psi(161700) = psi(163800) = 564480 = 158340 + 161700 + 163800. Other examples: (322140, 322140, 323400), (14127960, 14224980, 14224980).
		

Crossrefs

A386943 Ordered hypotenuses of nonprimitive Pythagorean triples of the form (u^2 - v^2, 2*u*v, u^2 + v^2), where u and v are positive integers.

Original entry on oeis.org

10, 20, 26, 34, 40, 45, 50, 52, 58, 68, 74, 80, 82, 90, 100, 104, 106, 116, 117, 122, 125, 130, 130, 136, 146, 148, 153, 160, 164, 170, 170, 178, 180, 194, 200, 202, 208, 212, 218, 225, 226, 232, 234, 244, 245, 250, 250, 260, 260, 261, 272, 274, 290, 290, 292, 296
Offset: 1

Views

Author

Felix Huber, Aug 24 2025

Keywords

Comments

In the form (u^2 - v^2, 2*u*v, u^2 + v^2), u^2 + v^2 is the hypotenuse, max(u^2 - v^2, 2*u*v) is the long leg and min(u^2 - v^2, 2*u*v) is the short leg.
A101930(n) gives the total number of Pythagorean triples <= 10^n.
number of terms <= h total number of
h in this sequence hypotenuses <= h percentage
10 1 2 50.0 %
100 15 52 28.8 %
1000 209 881 23.7 %
10000 2249 12471 18.0 %
100000 23086 161436 14.3 %

Examples

			The nonprimitive Pythagorean triple (6, 8, 10) is of the form (u^2 - v^2, 2*u*v, u^2 + v^2): From u = 3 and v = 1 follows u^2 - v^2 = 8 (long leg), 2*u*v = 6 (short leg), u^2 - v^2 = 10 (hypotenuse). Therefore, 10 is a term.
		

Crossrefs

Programs

  • Maple
    A386943:=proc(N) # To get all hypotenuses <= N
        local i,l,u,v;
        l:=[];
        for u from 2 to floor(sqrt(N-1)) do
            for v to min(u-1,floor(sqrt(N-u^2))) do
                if gcd(u,v)>1 or is(u-v,even) then
                    l:=[op(l),[u^2+v^2,max(2*u*v,u^2-v^2),min(2*u*v,u^2-v^2)]]
                fi
            od
        od;
        l:=sort(l);
        return seq(l[i,1],i=1..nops(l));
    end proc;
    A386943(296);

Formula

a(n) = sqrt(A386944(n)^2 + A386945(n)^2).
{A009000(n)} = {a(n)} union {A020882(n)} union {A386307(n)}.

A386944 Long legs of Pythagorean triples of the form (u^2 - v^2, 2*u*v, u^2 + v^2), ordered by increasing hypotenuse (A386943).

Original entry on oeis.org

8, 16, 24, 30, 32, 36, 48, 48, 42, 60, 70, 64, 80, 72, 96, 96, 90, 84, 108, 120, 100, 112, 126, 120, 110, 140, 135, 128, 160, 154, 168, 160, 144, 144, 192, 198, 192, 180, 182, 216, 224, 168, 216, 240, 196, 200, 234, 224, 252, 189, 240, 210, 286, 288, 220, 280, 280
Offset: 1

Views

Author

Felix Huber, Aug 24 2025

Keywords

Comments

In the form (u^2 - v^2, 2*u*v, u^2 + v^2), u^2 + v^2 is the hypotenuse, max(u^2 - v^2, 2*u*v) is the long leg and min(u^2 - v^2, 2*u*v) is the short leg.

Examples

			The nonprimitive Pythagorean triple (6, 8, 10) is of the form (u^2 - v^2, 2*u*v, u^2 + v^2): From u = 3 and v = 1 follows u^2 - v^2 = 8 (long leg), 2*u*v = 6 (short leg), u^2 - v^2 = 10 (hypotenuse). Therefore, 8 is a term.
		

Crossrefs

Programs

  • Maple
    A386944:=proc(N) # To get all hypotenuses <= N
        local i,l,u,v;
        l:=[];
        for u from 2 to floor(sqrt(N-1)) do
            for v to min(u-1,floor(sqrt(N-u^2))) do
                if gcd(u,v)>1 or is(u-v,even) then
                    l:=[op(l),[u^2+v^2,max(2*u*v,u^2-v^2),min(2*u*v,u^2-v^2)]]
                fi
            od
        od;
        l:=sort(l);
        return seq(l[i,2],i=1..nops(l));
    end proc;
    A386944(296);

Formula

a(n) = sqrt(A386943(n)^2 - A386945(n)^2).
{A046084(n)} = {a(n)} union {A046087(n)} union {A386308(n)}.
Previous Showing 61-70 of 413 results. Next