A368638 a(n) is the number of triangular partitions whose Young diagram fits inside a square of side n.
1, 2, 5, 12, 25, 48, 83, 136, 211, 314, 449, 626, 849, 1130, 1475, 1892, 2389, 2982, 3677, 4492, 5435, 6518, 7751, 9156, 10741, 12526, 14523, 16750, 19219, 21958, 24975, 28300, 31949, 35942, 40295, 45032, 50165, 55730, 61745, 68234, 75213, 82722, 90773, 99408
Offset: 0
Keywords
Links
- Sergi Elizalde and Alejandro B. Galván, Triangular partitions: enumeration, structure, and generation, arXiv:2312.16353 [math.CO], (2023).
Crossrefs
The number of triangular partitions of size n is in A352882.
Programs
-
MATLAB
% subpart(n) := a(n-1). nmax = 44; for n = 1 : nmax subpart(n) = 1; for i = 1 : n subpart(n) = subpart(n) + (n - i + 1)*(n - i)*eulerPhi(i)/2; end end
Formula
a(n) = 1 + Sum_{i=1..n} binomial(n-i+2,2)*phi(i).
Comments