A316554 Triangle read by rows: number of Boolean functions in n variables, of algebraic degree d, with the property that at least one of their discrete derivatives has degree strictly smaller than d-1 (d-1 is maximum possible degree).
0, 3, 0, 7, 7, 0, 15, 35, 15, 0, 31, 1023, 155, 31, 0, 63, 18879, 56079, 651, 63, 0, 127, 2097151, 128373759, 4090543, 2667, 127, 0, 255, 155553791, 8739796397055, 8761037088127, 534190575, 10795, 255, 0, 511, 68719476735, 36818452141739261951, 603282315201970099093503, 36821430371387013247, 137165789295, 43435, 511, 0
Offset: 1
Examples
Table begins: 0, 3, 0, 7, 7, 0, 15, 35, 15, 0, 31, 1023, 155, 31, 0, 63, 18879, 56079, 651, 63, 0, ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..105 (rows 1 <= n <= 14, flattened).
- A. Salagean and M. Mandache-Salagean, Counting and characterising functions with "fast points" for differential attacks, Cryptography and Communications 9 (2017), 217-239.
- Ana Sălăgean, Ferruh Özbudak, Counting Boolean functions with faster points, Designs, Codes and Cryptography (2020).
Crossrefs
Cf. A022166.
Programs
-
Mathematica
Block[{f}, f[n_, k_, m_] := Product[(1 - m^(n - i))/(1 - m^(i + 1)), {i, 0, k - 1}]; Table[Sum[(-1)^(i - 1)*2^(i (i - 1)/2)*f[n, i, 2] (2^Binomial[n - i, k] - 1), {i, n - k}], {n, 9}, {k, n}]] // Flatten (* Michael De Vlieger, Jun 16 2020 *)
-
PARI
qb(n, k, m) = prod(i=0, k-1, (1 - m^(n-i))/(1-m^(i+1))); T(n, k) = sum(i=1, n-k, (-1)^(i-1)*2^(i*(i-1)/2)*qb(n,i,2)*(2^binomial(n-i,k)-1)); \\ Michel Marcus, Jul 22 2018
Formula
T(n,d) = Sum_{i=1..n-d} (-1)^(i-1) 2^(i(i-1)/2) qbinomial(n,i,2) (2^binomial(n-i,d)-1).
Recurrence relation on n, for each fixed d: T(n,d) = Sum_{i=1..(n-d)} qbinomial(n,i,2) (2^binomial(n-i,d) - 1 - T(n-i,d)); T(d,d) = 0.
Comments