A219788 Consider the succession rule (x, y, z) -> (z, y+z, x+y+z). Sequence gives z values starting at (0, 1, 2).
2, 3, 8, 17, 39, 87, 196, 440, 989, 2222, 4993, 11219, 25209, 56644, 127278, 285991, 642616, 1443945, 3244515, 7290359, 16381288, 36808420, 82707769, 185842670, 417584689, 938304279, 2108350577, 4737420744, 10644887786, 23918845739, 53745158520, 120764274993
Offset: 1
Examples
The seed values are (0,1,2), giving a(1) = 2. (2, 2+1, 2+1+0) is the next triple, giving a(2) = 2+1+0 = 3. (3, 6, 8) is next, yielding a(3) = 8. The triples that follow begin (8,14,17), (17,31,39), etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2844
- Clement Falbo, The Golden Ratio - A Contrary Viewpoint, Vol. 36, No. 2, March 2005, The College Mathematics Journal.
- Y-h. Guo, Some n-Color Compositions, J. Int. Seq. 15 (2012) 12.1.2, eq. (10) and Theorem 8.
- Brian Hopkins, Hua Wang, Restricted Color n-color Compositions, arXiv:2003.05291 [math.CO], 2020.
- R. Sachdeva and A. K. Agarwal, Combinatorics of certain restricted n-color composition functions, Discrete Mathematics, 340, (2017), 361-372.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-1).
Programs
-
Mathematica
Rest@ CoefficientList[Series[-x (-2 + x)/(1 - 2 x - x^2 + x^3), {x, 0, 32}], x] (* Michael De Vlieger, Jun 17 2020 *) sr[{x_,y_,z_}]:={z,y+z,x+y+z}; NestList[sr,{0,1,2},40][[All,3]] (* Harvey P. Dale, Aug 18 2020 *)
-
PARI
first(n)=my(x=0,y=1,z=2,v=List([z])); for(i=2, n, [x,y,z]=[z, y+z, x+y+z]; listput(v,c)); Vec(v) \\ Charles R Greathouse IV, Nov 28 2012
Formula
a(n) = 2a(n-1) + a(n-2) - a(n-3). - Charles R Greathouse IV, Nov 28 2012
The essentially identical sequence 1,0,2,3,8,17,39,... with offset 0 is defined by a(n) = 2a(n-1) + a(n-2) - a(n-3) with initial terms a(0)=1, a(1)=0, a(2)=2. - N. J. A. Sloane, Jan 16 2017
G.f.: -x*(-2+x) / ( 1-2*x-x^2+x^3 ). - R. J. Mathar, Feb 03 2014
Comments