A367252 a(n) is the number of ways to tile an n X n square as explained in comments.
1, 0, 1, 4, 88, 3939, 534560, 185986304, 175655853776, 437789918351688, 2898697572048432368, 50698981110982431863735, 2342038257118692026082013568, 285250169294740386915765591840768, 91531011920509198679773321121428857296, 77312253225939431362091700178995800855209496
Offset: 0
Keywords
Links
- Anna Tscharre, A possible 6 X 6 tiling
Programs
-
Maple
b:= proc(x, y) option remember; (F-> `if`(x=0 and y=0, 1, `if`(x>0, b(x-1, y)*F(y-1), 0)+ `if`(y>x, b(x, y-1)*F(x+1), 0)))(combinat[fibonacci]) end: a:= n-> b(n$2): seq(a(n), n=0..15); # Alois P. Heinz, Nov 11 2023
-
Mathematica
b[x_, y_] := b[x, y] = With[{F = Fibonacci}, If[x == 0 && y == 0, 1, If[x > 0, b[x - 1, y]*F[y - 1], 0] + If[y > x, b[x, y - 1]*F[x + 1], 0]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 15}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)
Formula
a(n) == 1 (mod 2) <=> n in { A055010 }. - Alois P. Heinz, Nov 11 2023
Comments