cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Antonie Dinculescu

Antonie Dinculescu's wiki page.

Antonie Dinculescu has authored 7 sequences.

A326236 Numbers k such that N = k^6 is a twin rank (cf. A002822: 6N +- 1 are twin primes).

Original entry on oeis.org

1, 1820, 2590, 4795, 5565, 8330, 8470, 10640, 10710, 15960, 16730, 19145, 24535, 26460, 34580, 37065, 41510, 42630, 43505, 48230, 59675, 69160, 84910, 90860, 99540, 103320, 112560, 114205, 117600, 127120, 129220, 131670, 143290, 152740, 161105, 164115, 170030, 175105, 181195, 185045
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 14 2019

Keywords

Comments

Dinculescu notes that when N = m^2 (resp. m^3) > 1 is a twin rank (i.e., in A002822), then m is a multiple of 5 (resp. of 7), cf. A326232 and A326234. Thus, when N = m^6, then m is a multiple of 35. See A326235 for a(n)/35, n > 1.
See A326232 and A326231 for m^2, A326234 and A326233 for m^3.

Crossrefs

Cf. A002822, A326235 (a(n)/35, n>1), A326231, A326232 (analog for n^2), A326233, A326234 (analog for n^3), A326230 (least twin rank n^k for given k).

Programs

  • PARI
    select( is(n)=!for(s=1,2,ispseudoprime(6*n^6+(-1)^s)||return), [1..10^5])

Formula

a(n) = 35*A326235(n-1), n >= 2.

A326235 Numbers k such that N = (35k)^6 is a twin rank (A002822: 6N +- 1 are twin primes).

Original entry on oeis.org

52, 74, 137, 159, 238, 242, 304, 306, 456, 478, 547, 701, 756, 988, 1059, 1186, 1218, 1243, 1378, 1705, 1976, 2426, 2596, 2844, 2952, 3216, 3263, 3360, 3632, 3692, 3762, 4094, 4364, 4603, 4689, 4858, 5003, 5177, 5287, 5361, 5426, 5999, 6054, 6285, 6347, 6417, 6457, 6639, 6862, 7269, 7500
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 14 2019

Keywords

Comments

Dinculescu notes that if N = m^2 > 1 is a twin rank (i.e., in A002822), then m is a multiple of 5, and if N = m^3 > 1, then m is a multiple of 7, cf. A326231 and A326233. Thus, when N = m^6, then m is a multiple of 35, and here we list these m/35.
See A326236 for the numbers m.

Crossrefs

Cf. A002822, A326231 (analog for m^2), A326232, A326233 (analog for m^3), A326234, A326236 ({1} U {35*a(n)}), A326230 (least twin rank m^n for given n).

Programs

  • PARI
    select( is(n)=!for(s=1,2,ispseudoprime(6*(35*n)^6+(-1)^s)||return), [1..10^4])

Formula

a(n) = A326236(n+1)/35.

Extensions

a(1..10^4) independently computed using Mathematica and PARI/GP, by A. D. and M. F. Hasler, Jun 19 2019

A326234 Numbers n such that N = n^3 is a twin rank (A002822: 6N +- 1 are twin primes).

Original entry on oeis.org

1, 28, 42, 168, 203, 287, 308, 518, 1043, 1057, 1512, 1603, 1638, 1680, 1757, 1988, 2905, 3367, 3927, 4018, 4928, 5033, 5145, 5257, 5292, 5432, 5733, 6762, 7182, 7210, 7798, 8715, 10213, 10318, 10668, 10745, 11088, 12243, 13552, 14245, 14588, 14707, 15155, 15323, 15687, 15722, 15757
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 14 2019

Keywords

Comments

Dinculescu notes that when n^2 or n^3 is a twin rank > 1 (i.e., in A002822), then n is a multiple of 5, resp. 7. It is unknown whether there exist other pairs (a, b) different from (5, 2) and (7, 3) such that n^b => a | n. (Of course (5, 2k) and (7, 3k) and (35, 6k) is a solution for any k.) See A326233 for the terms > 1 divided by 7.
See A326232 and A326231 for the case n^2, A326236 and A326235 for n^6.

Crossrefs

Cf. A002822, A326233 (a(n)/7, n>1), A326231, A326232 (analog for n^2), A326235, A326236 (analog for n^6), A326230 (least twin rank n^k > 1 for given k).

Programs

  • PARI
    select( is(n)=!for(s=1,2,ispseudoprime(6*n^3+(-1)^s)||return), [1..10^5])

Formula

a(n) = 7*A326233(n-1), n >= 2.

A326233 Numbers n such that N = (7n)^3 is a twin rank (A002822: 6N +- 1 are twin primes).

Original entry on oeis.org

4, 6, 24, 29, 41, 44, 74, 149, 151, 216, 229, 234, 240, 251, 284, 415, 481, 561, 574, 704, 719, 735, 751, 756, 776, 819, 966, 1026, 1030, 1114, 1245, 1459, 1474, 1524, 1535, 1584, 1749, 1936, 2035, 2084, 2101, 2165, 2189, 2241, 2246, 2251, 2301, 2305, 2384, 2511, 2541, 2710, 2865, 2955, 2990
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 14 2019

Keywords

Comments

Dinculescu notes that if m^3 > 1 is a twin rank (i.e., in A002822), then m is always a multiple of 7. (Indeed, 6m^3 + 1 == 0 (mod 7) if m == 1, 2 or 4 (mod 7), and 6m^3 - 1 == 0 (mod 7) for m == 3, 5 or 6 (mod 7).)
He asks whether there are other pairs (a, b) different from (5, 2) and (7, 3) such that all twin ranks m^b > 1 are of the form m = a*n. (Of course (5, 2) and (7, 3) imply that (5, 2k), (7, 3k) and (35, 6k) is also such a pair for any k >= 1.)
This sequence lists these m/7 for (a, b) = (7, 3), see A326234 for the numbers m.
See A326231, A326232 for m^2 and A326235, A326236 for m^6.

Crossrefs

Cf. A002822, A326234 ({1} U 7*{a(n)}), A326231 (analog for n^2), A326232, A326235 (analog for n^6), A326236, A326230 (least twin rank n^k > 1 for given k).

Programs

  • Maple
    filter:= proc(n) local m;
      m:= (7*n)^3;
    isprime(6*m+1) and isprime(6*m-1)
    end proc:
    select(filter, [$1..3000]); # Robert Israel, Jun 17 2019
  • PARI
    select( is(n)=!for(s=1,2,ispseudoprime(6*(7*n)^3+(-1)^s)||return), [1..10^4])

Formula

a(n) = A326234(n+1)/7.

A326232 Numbers k such that N = k^2 is a twin rank (cf. A002822: 6N +- 1 are twin primes).

Original entry on oeis.org

1, 5, 10, 35, 60, 70, 75, 210, 240, 385, 430, 445, 495, 590, 655, 730, 805, 815, 835, 1005, 1040, 1045, 1230, 1390, 1430, 1530, 1670, 1715, 1850, 1890, 1920, 2000, 2020, 2100, 2110, 2245, 2310, 2405, 2415, 2495, 2545, 2685, 2755, 2840, 2935, 2950, 3045, 3255, 3260, 3335, 3420, 3650, 3775, 3805
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 14 2019

Keywords

Comments

Dinculescu notes that when k^2 > 1 is a twin rank (i.e., in A002822), then k is always a multiple of 5, and if k^3 > 1 is a twin rank, it is divisible by 7. See A326231 for the terms > 1 divided by 5.
See A326234 and A326233 for k^3, A326236 and A326235 for k^6.

Crossrefs

Cf. A002822, A326231 (a(n)/5, n>1), A326233, A326234 (analog for k^3), A326235, A326236 (analog for k^6), A326230 (least twin rank m^n for given n).

Programs

  • PARI
    select( is(n)=!for(s=1,2,ispseudoprime(6*n^2+(-1)^s)||return), [1..5000])

A326231 Numbers n such that N = (5n)^2 is a twin rank (cf. A002822: 6N +- 1 are twin primes).

Original entry on oeis.org

1, 2, 7, 12, 14, 15, 42, 48, 77, 86, 89, 99, 118, 131, 146, 161, 163, 167, 201, 208, 209, 246, 278, 286, 306, 334, 343, 370, 378, 384, 400, 404, 420, 422, 449, 462, 481, 483, 499, 509, 537, 551, 568, 587, 590, 609, 651, 652, 667, 684, 730, 755, 761, 806, 817, 825, 827, 848, 867, 870, 882, 916, 931, 980, 982, 992
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 14 2019

Keywords

Comments

Dinculescu notes that if N = m^2 > 1 is a twin rank (i.e., in A002822), then m is always a multiple of 5, and if N = m^3 > 1, then m is a multiple of 7, cf. A326234. He asks whether there are other pairs (a, b) different from (5, 2) and (7, 3) such that all twin ranks m^b > 1 are of the form m = a*n. (Of course (5, 2) and (7, 3) imply that (5, 2k), (7, 3k) and (35, 6k) is such a pair for any k.) This sequence lists the n for (a, b) = (5, 2), see A326232 for the numbers m.
See A326233, A326234 for m^3 and A326235, A326236 for m^6.

Crossrefs

Cf. A002822, A326232 ({1} U {5*a(n)}), A326233 (analog for m^3), A326234, A326235 (analog for m^6), A326230 (least twin rank n^k > 1 for given k).

Programs

  • PARI
    select( is(n)=!for(s=1,2,ispseudoprime(150*n^2+(-1)^s)||return), [1..10^3])

Formula

a(n) = A326232(n+1)/5.

A326230 Least k > 1 such that k^n is a twin rank (cf. A002822: 6*k^n +- 1 are twin primes).

Original entry on oeis.org

2, 5, 28, 70, 2, 1820, 110, 1850, 2520, 220, 2023, 9415, 647, 2880, 2562, 3895, 2, 51240, 525, 3750, 147, 2350, 355, 4480, 2588, 3370, 38157, 1185, 1473, 12530, 4338, 1540, 1988, 535, 102, 22606, 13773, 18895, 16373, 2635, 20428, 76300, 23037, 29005, 11078
Offset: 1

Author

M. F. Hasler and Antonie Dinculescu, Jun 16 2019

Keywords

Comments

Dinculescu observes that when k^2 > 1 is a twin rank (i.e., in A002822) then 5 | k (k is divisible by 5), and if k^3 is a twin rank, then 7 | k; cf. A326232 & A326234. It is unknown whether there are other pairs (a, b) such that a | n whenever n^b > 1 is a twin rank. (Of course 2 | b => 5 | a and 3 | b => 7 | a, so we aren't interested in pairs (a, b) which are consequence of this.)

Crossrefs

Programs

  • PARI
    a(n)=for(k=2,oo,ispseudoprime(6*k^n-1)&&ispseudoprime(6*k^n+1)&&return(k))