cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Antonio Campello

Antonio Campello's wiki page.

Antonio Campello has authored 1 sequences.

A181675 V(n,n^2), where V is the number of integer points in an n-dimensional sphere of Lee-radius n^2 centered at the origin.

Original entry on oeis.org

3, 41, 1159, 50049, 2908411, 212358985, 18665359119, 1917971421185, 225555471838387, 29871434052884841, 4398867465890529303, 712959801840558794625, 126115813138335816685995
Offset: 2

Author

Antonio Campello, Nov 04 2010

Keywords

Comments

Since V(n,d) is symmetric, we have V(n,n^2) = V(n^2,n).

Crossrefs

V(n, n) = A001850, V(n, 2n) = A026000 and V(n, 3n) = A026001.

Programs

  • Mathematica
    Array[Sum[2^j*Binomial[#1, j] Binomial[#2, j], {j, 0, Min[#1, #2]}] & @@ {#, #^2} &, 13] (* Michael De Vlieger, Jul 05 2019 *)

Formula

V(n,d) = Sum_{j=0..min(n,d)} 2^j * binomial(n,j)*binomial(d,j).
a(n) ~ exp(n-2) * (2*n)^(n - 3/2) / sqrt(Pi). - Vaclav Kotesovec, Feb 13 2021