cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Arie Groeneveld

Arie Groeneveld's wiki page.

Arie Groeneveld has authored 1 sequences.

A219964 a(n) = product(i >= 0, (P(n, i)/P(n-1, i))^(2^i)) where P(n, i) = product(p prime, n/2^(i+1) < p <= n/2^i).

Original entry on oeis.org

1, 1, 2, 3, 2, 5, 3, 7, 4, 1, 5, 11, 9, 13, 7, 1, 16, 17, 1, 19, 25, 1, 11, 23, 81, 1, 13, 1, 49, 29, 1, 31, 256, 1, 17, 1, 1, 37, 19, 1, 625, 41, 1, 43, 121, 1, 23, 47, 6561, 1, 1, 1, 169, 53, 1, 1, 2401, 1, 29, 59, 1, 61, 31, 1, 65536, 1, 1, 67, 289, 1, 1, 71
Offset: 0

Author

Peter Luschny and Arie Groeneveld, Mar 30 2013

Keywords

Comments

a(n) is 1 or a prime or an even power of a prime (A084400, A050376).
If n > 0 then a(n) = 1 if and only if n is an element of A110473.

Examples

			a(20) = (7/(5*7))^2*((3*5)/3)^4 = 25.
a(22) = ((13*17*19)/(11*13*17*19))*((7*11)/7)^2 = 11.
		

Crossrefs

Cf. A220027, the partial products of a(n).

Programs

  • J
    genSeq=: 3 :0
    p=. x: i.&.(_1&p:) y1=.y+1
    i=.(#~y1>])&.> <:@((i.@>.&.(2&^.)y1)*])&.> p
    y{.(;p(^2x^0,i.@<:@#)&.>i) (;i) } y1$1
    )
    
  • Maple
    A219964 := proc(n) local l, m, z;
    if isprime(n) then RETURN(n) fi;
    z := 1; l := n - 1; m := n;
    do l := iquo(l, 2); m := iquo(m, 2);
       if l = 0 then break fi;
       if l < m then if isprime(l+1) then RETURN((l+1)^z) fi fi;
       z := z + z;
    od; 1 end:  seq(A219964(k), k=0..71);
  • Mathematica
    a[n_] := Module[{l, m, z}, If[PrimeQ[n] , Return[n] ]; z = 1; l = Max[0, n - 1]; m = n; While[True, l = Quotient[l, 2]; m = Quotient[m, 2]; If[l == 0 , Break[]]; If[l < m , If[ PrimeQ[l+1], Return[(l+1)^z]]]; z = z+z]; 1]; Table[a[k], {k, 0, 71}] (* Jean-François Alcover, Jan 15 2014, after Maple *)
  • Sage
    def A219964(n):
        if is_prime(n): return n
        z = 1; l = max(0,n-1); m = n
        while true:
            l = l // 2
            m = m // 2
            if l == 0: break
            if l < m:
                if is_prime(l+1): return (l+1)^z
            z = z + z
        return 1
    [A219964(n) for n in (0..71)]

Formula

a(n) = A220027(n) / A220027(n-1).