A375120 Number of complete binary unordered tree-factorizations of n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 2, 1, 1, 9, 1, 2, 1, 2, 1, 4, 1, 4, 1, 1, 1, 9, 1, 1, 2, 6, 1, 3, 1, 2, 1, 3, 1, 15, 1, 1, 2, 2, 1, 3, 1, 9, 2, 1, 1, 9, 1, 1, 1
Offset: 1
Keywords
Examples
For n = 4, the a(4) = 1 sole factor tree is 4 4 = 2*2 / \ 2 2 For n=12, the a(12) = 2 factor trees are 12 12 / \ / \ 2 6 3 4 / \ / \ 2 3 2 2 The tree structures are the same but the values are not the same and are therefore distinct factorizations.
Programs
-
SageMath
@cached_function def a(n): if is_prime(n) or n == 1: return 1 T = [t for t in divisors(n) if 1 < t <= n/t] return sum(a(d)*a(n//d) for d in T) print([a(n) for n in range(1, 88)]) # Peter Luschny, Nov 03 2024
Comments