cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Bernardo González Merino

Bernardo González Merino's wiki page.

Bernardo González Merino has authored 2 sequences.

A298755 Quantitative (discrete) Helly numbers for the integer lattice Z^2.

Original entry on oeis.org

4, 6, 6, 6, 8, 7, 8, 9, 8, 8, 10, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 11, 11, 12, 12, 12, 13, 12, 12, 13, 13, 13, 13, 14, 14, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 14, 15, 15, 15, 15, 15, 16, 15, 16, 15, 16, 16, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 16, 17, 17, 17, 17, 17
Offset: 0

Author

Keywords

Comments

a(n) = c(Z^2,n) is the smallest k>0 such that for every collection of convex sets C_1, ..., C_m having n points of Z^2 in common, there exists a subset of this collection of at most k elements such that they still contain exactly n points of Z^2 in common.
c(Z^2,n) = g(Z^2,n) = A298562(n) for n = 0, 1, ..., 200, but it is not known whether they agree for every n or not.

Crossrefs

Cf. A298562.

Formula

a(n) = max_{m=0..n} (A298562(m) + m - n). [Averkov et al.] - Andrey Zabolotskiy, Oct 02 2023

Extensions

a(31) onwards from Andrey Zabolotskiy, Oct 02 2023

A298562 Quantitative (polygonal) Helly numbers for the integer lattice Z^2.

Original entry on oeis.org

4, 6, 6, 6, 8, 7, 8, 9, 8, 8, 10, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 11, 11, 12, 12, 12, 13, 12, 12, 13, 13, 13, 13, 14, 14, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 14, 15, 15, 15, 15, 15, 16, 15, 16, 15, 16, 16, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 16, 17, 17, 17, 17, 17
Offset: 0

Author

Keywords

Comments

a(n) = g(Z^2,n) is the maximum integer k > 0 such that there exists a lattice polygon with k vertices containing exactly n+k lattice points (in its interior or on the boundary). [edited by Günter Rote, Oct 01 2023]

Examples

			a(18) = 11 (so this sequence differs from A322345), attained only by the following polygon (No. 3736 in the corresponding list in Castryck's file) with 11 vertices, 1 non-vertex boundary lattice point, and genus (number of internal lattice points) 17: [(-2, -1), (-1, -2), (1, -2), (3, -1), (4, 0), (4, 1), (3, 2), (1, 3), (0, 3), (-1, 2), (-2, 0)].
		

Crossrefs

Programs

  • Python
    # See the Python program for A322345.

Extensions

a(31) onwards from Günter Rote, Oct 01 2023