A298755 Quantitative (discrete) Helly numbers for the integer lattice Z^2.
4, 6, 6, 6, 8, 7, 8, 9, 8, 8, 10, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 12, 11, 11, 12, 12, 12, 13, 12, 12, 13, 13, 13, 13, 14, 14, 13, 13, 14, 14, 14, 14, 14, 14, 14, 15, 14, 15, 15, 15, 15, 15, 16, 15, 16, 15, 16, 16, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 16, 17, 17, 17, 17, 17
Offset: 0
Keywords
Links
- G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge, Tight bounds on discrete quantitative Helly numbers, arXiv:1602.07839 [math.CO], 2016. See Fig. 3 p. 5.
- G. Averkov, B. González Merino, I. Paschke, M. Schymura, and S. Weltge, Tight bounds on discrete quantitative Helly numbers, Adv. in Appl. Math., 89 (2017), 76--101.
Crossrefs
Cf. A298562.
Formula
a(n) = max_{m=0..n} (A298562(m) + m - n). [Averkov et al.] - Andrey Zabolotskiy, Oct 02 2023
Extensions
a(31) onwards from Andrey Zabolotskiy, Oct 02 2023
Comments