cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Chandrappa Shivashankar

Chandrappa Shivashankar's wiki page.

Chandrappa Shivashankar has authored 2 sequences.

A335604 Number of 9-regular cubic partitions of n.

Original entry on oeis.org

1, 1, 3, 4, 9, 12, 23, 31, 54, 72, 117, 156, 242, 320, 477, 628, 909, 1188, 1676, 2178, 3012, 3888, 5283, 6780, 9079, 11582, 15309, 19424, 25389, 32040, 41462, 52063, 66780, 83448, 106182, 132084, 166862, 206660, 259359, 319896, 399069, 490272, 608234, 744444, 918864
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(9*k)) * (1 - x^(18*k)) / ((1 - x^k) * (1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2020 *)
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(eta(x^9 + A)*eta(x^18 + A)/(eta(x + A)*eta(x^2 + A)))} \\ Andrew Howroyd, Jul 29 2020

Formula

G.f.: (f_9(x)*f_18(x)) / (f_1(x)*f_2(x)) where f_k(x) = Product_{m>=1} (1 - x^(m*k)).
a(n) ~ exp(2*sqrt(2*n)*Pi/3) / (2^(3/4) * 3^(5/2) * n^(3/4)). - Vaclav Kotesovec, Jun 23 2020

A335602 Number of 3-regular cubic partitions of n.

Original entry on oeis.org

1, 1, 3, 3, 8, 9, 17, 20, 36, 43, 70, 84, 131, 158, 234, 284, 408, 495, 690, 837, 1143, 1385, 1852, 2241, 2952, 3565, 4626, 5574, 7150, 8595, 10903, 13074, 16434, 19656, 24494, 29223, 36146, 43016, 52836, 62722, 76572, 90675, 110063, 130021, 157014, 185049, 222388
Offset: 0

Author

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Product[(1 - x^(3*k)) * (1 - x^(6*k)) / ((1 - x^k) * (1 - x^(2*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2020 *)
  • PARI
    seq(n)={my(A=O(x*x^n)); Vec(eta(x^3 + A)*eta(x^6 + A)/(eta(x + A)*eta(x^2 + A)))} \\ Andrew Howroyd, Jul 29 2020

Formula

G.f.: (f_3(x)*f_6(x)) / (f_1(x)*f_2(x)) where f_k(x) = Product_{m>=1} (1 - x^(m*k)).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (6^(5/4) * n^(3/4)). - Vaclav Kotesovec, Jun 23 2020