cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Chase Fortier

Chase Fortier's wiki page.

Chase Fortier has authored 1 sequences.

A251853 Nonnegative numbers n with all even digits such that the digital sum of the digits' sum is even.

Original entry on oeis.org

0, 2, 4, 6, 8, 20, 22, 24, 26, 40, 42, 44, 60, 62, 80, 200, 202, 204, 206, 220, 222, 224, 240, 242, 260, 400, 402, 404, 420, 422, 440, 488, 600, 602, 620, 668, 686, 688, 800, 848, 866, 868, 884, 886, 888, 2000, 2002, 2004, 2006, 2020, 2022, 2024, 2040, 2042, 2060, 2200
Offset: 1

Author

Chase Fortier, Dec 09 2014

Keywords

Examples

			2288 is in the sequence because it is even, 2 and 8 are even, 2 + 2 + 8 + 8 = 20 is even, and 2 + 0 = 2 is even.
		

Crossrefs

Programs

  • Mathematica
    a251853[n_Integer] := Module[{digitSum}, digitSum[x_] := Plus @@ IntegerDigits[x]; Select[Range[n], And[And @@ EvenQ@IntegerDigits[#], EvenQ@digitSum[#], EvenQ@Nest[digitSum, #, 2]] &]]; a251853[2200] (* Michael De Vlieger, Dec 11 2014 *)
  • PARI
    isevend(v) = for (i=1, #v, if (v[i] % 2, return (0))); return (1);
    isok(n) = isevend(digits(n)) && ((sumdigits(sumdigits(n)) % 2) == 0); \\ Michel Marcus, Dec 11 2014
    
  • Python
    A251853_list = [int(''.join(d)) for d in product('02468',repeat=4) if not sum(int(y) for y in str(sum(int(x) for x in d))) % 2] # Chai Wah Wu, Dec 20 2014
  • Sage
    [x for x in [0..2200] if prod([is_even(i) for i in x.digits()]) and sum(Integer(sum(x.digits())).digits())%2==0] # Tom Edgar, Dec 10 2014
    

Formula

Each digit in n is divisible by two, n is divisible by 2, the sum S of the digits of n is divisible by 2, and the sum of the digits of S is also divisible by 2.