A363747 Decimal expansion of 2*Integral_{x=0..1} 1/sqrt(1-x^16) dx.
2, 1, 6, 8, 2, 0, 4, 8, 3, 8, 1, 7, 8, 4, 1, 1, 9, 9, 3, 0, 0, 1, 7, 2, 3, 9, 0, 8, 9, 4, 8, 9, 3, 3, 2, 7, 8, 6, 5, 8, 6, 5, 8, 8, 6, 7, 3, 4, 2, 2, 9, 5, 9, 0, 1, 9, 5, 6, 2, 4, 2, 4, 0, 1, 2, 2, 8, 0, 9, 2, 9, 8, 8, 1, 2, 8, 9, 4, 9, 2, 4, 5, 0, 4, 9, 5, 5, 1, 2, 8, 0, 3, 3, 9, 4, 4, 9, 0, 3, 9, 4, 9, 8, 3, 2
Offset: 1
Examples
2.1682048381784119930017239089489332786586588673422... Gamma(1/16) = 2^(45/16)*Pi^(1/16)*I(2)^(1/8)*I(3)^(1/4)*I(4)^(1/2) = 15.481281...
Programs
-
Maple
evalf(2*int(1/sqrt(1-t^16),t=0..1), 120);
-
Mathematica
RealDigits[Beta[1/16, 1/2]/8, 10, 120][[1]] (* Amiram Eldar, Jun 22 2023 *)
-
PARI
2*intnum(x=0, 1, 1/sqrt(1-x^16)) \\ Michel Marcus, Jun 22 2023
Formula
Equals Beta(1/16,1/2)/8 = 2*sqrt(Pi)*Gamma(17/16)/Gamma(9/16).
Equals Pi^(3/2)/(8*sin(Pi/16)*Gamma(9/16)*Gamma(15/16)). - Christian N. Hofmann, Aug 28 2023
Gamma(1/2^n) = 2^((n-1)*(1-1/2^n)) * Product_{k=1..n} I(k)^(1/(2^(n-k+1))).
Comments