A363072 Add primes until a perfect power appears. When a perfect power appears, that term is the smallest root of the perfect power. Then return to adding primes, beginning with the next prime.
2, 5, 10, 17, 28, 41, 58, 77, 10, 39, 70, 107, 148, 191, 238, 291, 350, 411, 478, 549, 622, 701, 28, 117, 214, 315, 418, 525, 634, 747, 874, 1005, 1142, 1281, 1430, 1581, 1738, 1901, 2068, 2241, 2420, 51, 242, 435, 632, 831, 1042, 1265, 1492, 1721, 1954, 2193
Offset: 1
Examples
The first term is the first prime, p(1) = 2 a(1) = p(1) = 2 a(2) = a(1) + p(2) = 2 + 3 = 5 a(3) = a(2) + p(3) = 5 + 5 = 10 etc. a(8) = 58 + 19 = 77 a(9) is determined: a(8) + p(9) = 77 + 23 = 100, a perfect power. 10 is the smallest root of 100, therefore a(9) = 10 a(10) = 10 + p(10) = 10 + 29 = 39 and so on.
Crossrefs
Cf. A001597.
Programs
-
Mathematica
root[n_] := Surd[n, GCD @@ FactorInteger[n][[;; , 2]]]; a[1] = 2; a[n_] := a[n] = root[a[n - 1] + Prime[n]]; Array[a, 100] (* Amiram Eldar, May 21 2023 *)
Comments